Deutsch Intern
Chair of Computer Science III

Quality of Experience

Quality of Experience

We conduct research in relation to Internet applications: we evaluate applications, we model Internet applications. A frequently-performed investigation is the study of user satisfaction (Quality of Experience) with a particular Internet application.

ACM SIGCOMM 2017 - 2nd Workshop on QoE-based Analysis and Management of Data Communication Networks (Internet-QoE 2017) (Kopie 1)

Publication: Modeling of YouTube Video Streaming

Software Tool to Estimate YouTube QoE: YoMoApp

Current Projects

SmartQoE (Measurement Concept and Trendscouting for QoE in Mobile Context)

The focus of the project "SmartQoE" is on three major goals: 1. Development of a measurement concept to measure QoE-relevant application data with a smartphone app, 2. Analysis of collected data with respect to QoE criteria, 3. Trendscouting for QoE in mobile networks.

DFG QoE-DZ (Analysis and Optimization of the Trade-off between QoE and Energy-Efficiency in Data Centers)

This project focuses on quantifying and adjusting the trade-off between QoE and energy-efficiency in data centers for highly relevant use cases. An interesting use case for the interconnection between data centers, QoE, and energy-efficiency that is considered to have an increasing impact in the following years, are Virtual Desktop Infrastructures (VDIs). A VDI enables users to use very lightweight systems, e.g., so-called thin clients, whereby the actual operating system including all computations and software runs in a data center.

Mobi-QoE  (Monitoring and Analysis of Quality of Experience in Mobile Broadband Networks, EU H2020)

The objective of Mobi-QoE is to extend MONROE’s testbed to the QoE domain by integrating novel software-based QoE-capable measurement tools and QoE models for popular end-user services (e.g., YouTube, Facebook, Spotify).

Related Research Areas

Research Area: YouTube Video Streaming

YouTube is one of the most popular services in today’s Internet. It has more than 1 billion users and every day people watch hundreds of millions of hours of YouTube videos. Half of those YouTube views are on mobile devices. On the one hand, (mobile) operators want to handle the huge amount of video traffic as efficiently as possible (high revenue per bit), on the other hand, they want to deliver a high Quality of Experience (QoE) to satisfy their customers. Therefore, it is very important for operators to understand the performance of their networks with respect to YouTube traffic.

Research Area: QoE Monitoring in the Cloud

 

 

The rapid growth of video streaming offers video providers with a great opportunity to increase their revenues, but also presents challenges for the network providers. Network providers are typically not aware of the actual quality experienced by users of video streaming services. As a result, it is difficult for providers to adapt in the network when the QoE is low due to network impairments. To solve this problem, a monitoring mechanism in the network is needed to estimate the QoE perceived by the users.