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Abstract—With the increasing number of devices, protocols
and applications, today’s networks are becoming more and more
complex. Hence, Software-defined Networking (SDN) tries to ad-
dress this issue by separating the data from the control plane and
by providing centralized interfaces for network configuration. As
legacy devices cannot be replaced instantly due to high costs,
both network segments have to be operated in coexistence with
defined joints at their edges. To ensure a smooth operation, both
controlling instances of these segments are required to exchange
information. In this work, we design and implement a data model
for storing the information needed to keep the controller and a
Network Management System (NMS) synchronized, which are
responsible for configuring the SDN-enabled network and the
legacy devices respectively. For this, we implement and evaluate a
total of three different synchronization strategies by the example
of an SDN-based Bring Your Own Device (BYOD) use case.

Index Terms—SDN, NMS, Management, Integration, Hetero-
geneous Networks, Distributed Control Plane.

I. INTRODUCTION

Today’s networks face the challenge of a fast growing
number of users and devices, resulting in changing traffic
patterns and in fluctuating resource utilization. This establishes
the need for not only a flexible traffic management but also for
high bandwidths leading to more and more complex network
infrastructures. As a consequence, operators are facing a high
Capital Expenditure (CapEx) and Operational Expenditure
(OpEx) as well as a rigid, inflexible network architecture.
To tackle these drawbacks, the paradigm of Software-defined
Networking (SDN) separates the data from the control plane,
of which the latter is logically centralized within the SDN
controller. The controller provides a holistic view on the
network’s topology as well as programmable interfaces, thus
enabling an optimized resource utilization and cost savings for
the network operator.

During the migration towards a fully softwarized network,
existing legacy devices cannot be replaced instantly due to
practical and financial limitations [11]. For enterprises a first
adoption of this emerging technology leads to a coexistence
of legacy and SDN enabled networks, which are connected at
their edge. To establish a smooth conjunction between these
two network segments a cooperation of their individual control

instances, the SDN controller and a centralized Network
Management System is required. To avoid system inconsis-
tencies resulting in undefined system states, security flaws or
massive packet loss, both control instances need to exchange
information. In this work, this is done by synchronizing the
networking state. Hence, it needs to be determined which
information is required to be included into the state table and
which synchronization method is most beneficial.

The contribution of this work is therefore (1) the conception
of a data model designed for the shared network state synchro-
nization, (2) the implementation of a prototype incorporating
different synchronization strategies, and (3) the evaluation of
distributed control planes for managing heterogeneous net-
works. To conduct the evaluation we base our investigations
on a heterogeneous network scenario, consisting of an SDN
and a legacy network segment. The scenario is based on
an SDN-enabled Bring Your Own Device (BYOD) [7] use
case, granting each connected and authenticated user its own
personalized, virtual network. Requested services, residing
in the existing enterprise legacy infrastructure, require the
dynamic provisioning of an on demand path from SDN to
the legacy segment. To quantify our results we focus on the
window of inconsistency between the control planes and its
impact on the data plane represented by the setup times and
the overall packet loss of user to service connections.

The remainder of this work is structured as follows. In
Chapter II we introduce the concept of SDN and detail the
basis of Network Management Systems (NMS). In addition we
summarize an SDN-based Bring Your Own Device (BYOD)
setup which we use as scenario in this work. This followed
by a summary of related work in Chapter III. The derived
data model and the implemented synchronization strategies as
well as the test bed are detailed in Chapter IV. We proceed
in Chapter V by evaluating the implemented strategies within
the testbed, which is followed by a summary of our work in
Chapter VI.

II. BACKGROUND

In the following, we provide background information to the
paradigm of Software-defined Networking (SDN) and the fun-
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damentals of Network Managment Systems (NMS). In addition,
we introduce an SDN-based Bring Your Own Device (BYOD)
setup, used as a highly dynamic scenario for the evaluation of
this work.

A. Software-defined Networking
Software-defined Networking (SDN) is a paradigm, which

aims for reducing the management overhead of network oper-
ations while simultaneously increasing the flexibility [9]. For
this, SDN promotes the separation of the control and data
planes, which are unified on legacy devices. While the data
plane is responsible for simply forwarding the packets to their
destination and remains in the switching device, the control
plane is outsourced to a logically centralized SDN controller,
which runs on standard server hardware. The SDN controller
is responsible for determining where the packets are sent to
and provides a holistic view of the network as well as the
opportunity to configure the network via interfaces. Therefore,
it enables the operator to automate configuration changes via
central point within the network.

B. Network Management Systems
With a growing number of network devices, the configura-

tion, management and troubleshooting can be an exhaustive
task for a network operator. For this reason network operators
often rely on Network Management Systems (NMS) to maintain
and supervise their networks. A NMS achieves this by im-
plementing the Fault, Configuration, Accounting, Performance
and Security (FCAPS) model [6] as standardized by ISO. The
FCAPS model includes tasks for network device discovery and
configuration, which are done by either the Simple Network
Management Protocol (SNMP) [5] or through proprietary pro-
tocols. Therefore, the NMS is able to automatically configure
the legacy network from a central point in the network and is
thus a suitable counterpart to the SDN controller.

C. Sardine Bring Your Own Device
To investigate the effectiveness of a distributed control

plane, a highly dynamic scenario is required to provide suf-
ficient state changes, which need to be synchronized. In this
work the SARDINE Bring Your Own Device (S-BYOD) [7]
setup has been chosen and is introduced in the following.
BYOD enables end users to bring their own devices to a com-
pany or campus network and gains more and more importance
[1]. Existing solutions are often based on VLAN and do not
allow for a fine-grained flow control, thus softening security
policies. The authors of the paper [7] overcome this drawback
by employing SDN to deploy a fine-grained, on demand,
personalized virtual network initiated per device and requested
service. For this, the newly connected device remains isolated
from the network and has initially only access to the captive
portal. Here, the user is required to authenticate and to actively
request a service. Once the service is requested, the SDN
controller provisions a private path from the device to this
service. Therefore, the overall attack surface is limited to the
active services and the fine-grained flow control enables a
more flexible security policy enforcement.

III. RELATED WORK

This section provides a brief overview of related research
and details how the method followed in this work differs from
the presented approaches.

A. Sweet Little Lies

The paper Sweet Little Lies: Fake Topologies for Flexible
Routing [10] focuses on a method for fine-grained traffic
shaping within legacy networks using only link-state protocols.
To achieve this, the authors introduce an approach called
Fibbing, which manipulates a router’s view of the network by
sending fake packets to perform tasks like traffic steering, traf-
fic engineering, load balancing and fast failover. The authors
contend that a centralized control instance, like it is the case in
SDN, could then be used to manage a heterogeneous network,
consisting of SDN switches and legacy routers. However, it
can be argued that computing an augmented topology is simply
overhead in comparison to configuring a device by the use of
SNMP. Also it should be taken into account that manipulating
the FIB without being logged into the device can be seen as
critical since no authentication on the device is needed.

B. SDNMP

The paper SDNMP: Enabling SDN management using tra-
ditional NMS [11] covers a method for enabling an SDN
controller to provide OpenFlow data via SNMP. This in turn
allows the monitoring and management of SDN devices, using
traditional network management software. To achieve this
SDN management, the authors present a function called Data
Acquisition that runs inside the SDN controller, as it holds
all the needed information of the SDN network, i.e., the
network topology and related resources. In addition, it stores
the obtained data inside a MIB structure. The component called
SDNMP collects data from the controller via SNMP, which
is then converted into JSON format and outputted via a web
page. Accessing topology and OpenFlow data by using SNMP
is a promising feature. Yet, implementing this approach would
mean to build a coherent module for each SDN controller.
Therefore, in this work the NMS obtains its data over a SDN
controller’s REST API, as this module is already provided by
most controllers.

C. i-NMCS

The authors of the paper Enhancing Network Management
Frameworks with SDN-like Control [4] present a framework
called i-NMCS for managing legacy devices and softwarized
networks. Providing traditional NMS functions like discovery
and fault management for SDN-enabled networks, the frame-
work collects network and device information e.g. network
topology, from the NMS. Furthermore, the framework provides
the core components with network policy requirements and
translates the obtained information from the other i-NMCS
modules into OpenFlow flow rules. The authors implemented
two different scenarios. Whereas the first takes QoS provi-
sioning algorithms and the global network state into account,
to configure network devices, the second scenario performs
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flow provisioning on a user-identity basis. In both scenarios
the authors do not specify precisely whether the configured
devices consist merely of SDN devices or if a heterogeneous
network is configured. Moreover, the authors do not discuss
in detail how the state between the NMS and the core i-NMCS
component is kept consistent.

D. Incremental SDN Deployments

In the paper Incremental Deployment of SDN in Hybrid En-
terprise and ISP Networks [8] the authors present an algorithm
which selects a subset of legacy devices to be upgraded to
SDN-enabled devices. The authors show that this incremental
upgrade results in an increase of the network’s resiliency and
a decrease in the link utilization, due to advanced forward-
ing mechanisms, which are enabled by the global view of
SDN controller. To maintain the global view in this hybrid
SDN/legacy scenario, the presented architecture requires the
placement of SDN-enabled switches directly within the legacy
network. These intercept packets from classical routing proto-
cols, which are then forwarded to the controller, from which
it is able to deduce the topology of the legacy network. In
contrast, this work does not require the placement of additional
SDN-enabled switches within the legacy network for means
of topology discovery, as this information is directly provided
by the NMS. Thus, our focus resides on the consistency
constraints imposed by the interoperation of the NMS and
the SDN controller as well as the execution of configuration
changes within both networks.

IV. DESIGN & IMPLEMENTATION

In this section we describe the implementation for synchro-
nizing the SDN-enabled and legacy networks. For this, we
describe the testbed on which we performed our evaluations
and derive a common data model to hold the required informa-
tion. We proceed by detailing the synchronization process and
conclude by explaining the related synchronization strategies.

A. Testbed

To evaluate the implemented synchronization strategies,
we use the testbed as illustrated in Figure 1. Here, we
extend the existing BYOD setup to be attached to a legacy
network for the overall heterogeneous network scenario. On
the datapath we deploy one OpenFlow switch and one legacy
device. Both devices are implemented by a VM running inside
OpenStack. Furthermore, the User, shown on the left-hand
side in Figure 1 and the Network services on the right-hand
side are implemented as VMs. In addition we use ONOS
as SDN controller, to manage the OpenFlow switch and
to provide fine-grained policy enforcement for each BYOD
device and available service. Finally. we implement Infosim’s
StableNet as NMS, which monitors the entire setup, aggregates
the required information regarding the legacy network and
dynamically reconfigures the legacy device if needed.

OpenStack runs inside the Ubuntu OrangeBox which is
a portable box containing ten Intel NUC micro computers
connected to a cluster. Each NUC contains an Ivy Bridge

i5-3427U dual core CPU with 16GB of RAM and a 128GB
SSD [2]. The OpenStack version, running on the OrangeBox
is Mirantis OpenStack version 9.0.1 Mitaka. The OpenFlow
switch is realized by a VM with 1GB of RAM running Ubuntu
14.04 Trusty and the OpenVSwitch (OVS). The legacy device
consists of the same hardware and operating system configura-
tion, but instead of running OVS, we implemented the packet
forwarding with TC to resemble the functionality of a legacy
router. TC is shipped with Linux and is used to configure
network traffic within the Linux kernel [3]. Depending on the
selected synchronization strategy, either the NMS or the SDN
controller defines rules for ingress traffic to enable the basic
BYOD functionality.

B. Data Model

To enable the network state exchange between the SDN
controller and the NMS we implemented the data model
as displayed in Figure 2. This data model incorporates the
information of a user, a requested service as well as any
established connection. Hence, all relevant information for the
BYOD scenario can be synchronized by the NMS instance.

To hold both control instances synchronous, each time a user
requests or removes a service, the BYOD application, running
on the controller, maps this information into the data model.
To make this data model accessible to the NMS we extended
the REST interface of the BYOD application, which provides
the required information as JSON format.

In the following, we discuss the structure of the data model
in more detail. The root of the model is a Connection object.
It is specified by a particular User, a Service the user is
requesting, and all SDN Devices in the path between. The
User object, shown on the left-hand side of the figure, holds
information about the users ID, MAC address, IP addresses,
VLAN ID, and Location. The Location object in turn is
composed of a Device ID and the corresponding Port to which
an user is connected. The Service object, displayed in the
center, is composed of ID, TP port, the services Name, and
the services IP addresses. On the right-hand side of Figure 2
the Devices object is shown. This object holds the IDs and
Flows for all devices lying on the path from user to service.

C. Synchronization Process

The synchronization of the shared network state of the
NMS is done via a Business Process Script. This script
provides means to measure applications and services and can
be extended to use an External Measurement Script which is
designed to import structured data from the BYOD application.

The Business Script used for this work is written in Java and
is imported as JAR file into the NMS. For each execution the
script performs two steps, i.e., Discovery and Measurement.
In the first step all devices and services are discovered and
imported into the data model. Once this process is completed
the script schedules a measurement for each discovered entity.
This process is then repeated in defined intervals.

Using the Business Process and External Measurement
Script the NMS is able to monitor and display the current state
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x-axis shows the interconnection time ti from 0 seconds
to 17 seconds. On the y-axis the empirical CDF of the
interconnection time ti can be seen. The red line on the left-
hand side shows the measurement results for the direct method,
the green line in the center of the figure shows the results for
the pushing method, and the blue line on the right-hand side
shows the results for the polling method. From the right to the
left, the methods lines become steeper, indicating a decreasing
dispersion of the measured values.

Comparing the three methods by their interconnection time
ti median, significant differences can be seen. The polling
time with its interconnection time ti median of approximately
13.4 seconds is twice the interconnection time ti median of
the pushing method, which is at approximately 6.7 seconds.
Further, the interconnection time ti of the direct method with
approximately 0.41 seconds is by a factor of about 16 and 33
smaller than the values for the pushing and polling method
respectively. The same applies for the mean values which
correlate with the corresponding median values.

Examining Figure 4 similar results as discussed above can
be observed. The y-axis shows the empirical CDF of the
time to first packet out for the SDN and the legacy device,
split by method. The x-axis displays the time to first packet
out from 0 to 17 seconds. The purple line on the left-hand
side displays the SDN device measurements. The SDN device
measurement is displayed only once as the measurements are
independent from the synchronization method. The red, green,
and blue lines display the legacy devices time to first packet
out measurements for the direct, pushing, and polling method.

Comparing the time to first packet out median values, it can
again be seen that the direct method performs best followed by
the pushing method. As before, the polling method achieves
the weakest results. In 50% of all cases a packet is forwarded
in less or equal than 0.42 seconds with the direct method, less
or equal than 6.8 seconds with the pushing method, and less or

equal than 13.1 seconds with the polling method. Based on the
steepness, the dispersion of the measured values is the lowest
with the direct method, followed by the pushing method and
finally the polling method with the highest dispersion.

Table I summarizes the results from above and also incor-
porates the measured values for the window of inconsistency
as well as the amount of dropped packets on the data plane.

Reviewing the results of the polling method, it can be said
that it is inapplicable for the chosen heterogeneous BYOD
scenario. Despite the moderate window of inconsistency tw
of about 2.5 seconds, a user has to wait more than 13 seconds
on average until a requested service is ready for use. Hence,
this time is far too high and results in a noticeable service
degradation in a real world deployment. With 10 seconds the
biggest impact on this waiting time is caused by the StableNet
implementation of the alarm script execution. This is due to
the intentionally set interval in which alarms are correlated and
presented in an aggregated manner to the network operator.
Yet, due to this aggregation alarm scripts are not applicable
for real time configuration routines.

The pushing method meets these requirements more closely.
A user has to wait 6.5 seconds on average until a requested
service is ready for use. In a BYOD use case where a user
enables services over a captive portal and afterwards switches
to a desired application, this time may be sufficient to not
result in a decreased QoE. However compared to the window
of inconsistency tw with 170 milliseconds on average, the
majority of the interconnection time ti is caused by the
StableNet REST call and the processing time of the legacy
device configuration.

The direct method performs best in terms of interconnec-
tion time ti. With an interconnection time ti mean of 410
milliseconds it’s by orders of magnitude better than the other
two methods. Yet, the window of inconsistency tw is equal to
the window of inconsistency tw for the polling method. Since
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TABLE I
COMPARISON OF DIFFERENT METHODS

Method
Interconnection Time ti Window of Inconsistency tw Time to First Packet Out

Quartiles in [sec] Mean
in [sec]

Quartiles in [sec] Mean
in [sec]

Quartiles in [sec] Dropped Packets
25% 50% 75% 25% 50% 75% 25% 50% 75% Mean

Polling 12.1 13.4 14.6 13.4 1.3 2.5 3.6 2.5 11.8 13.1 14.4 1325
Pushing 6.2 6.6 6.75 6.5 0.15 0.16 0.18 0.17 6.6 6.8 7.2 680
Direct 0.405 0.41 0.415 0.41 1.3 2.5 3.6 2.5 0.41 0.42 0.43 8

the legacy device is configured by the controller and not by the
NMS the window of inconsistency only affects the monitoring
of the SDN network. However this performance is bought by
the direct configuration of the legacy device through the SDN
controller. This in return results in additional implementation
effort for the SDN controller whereas the NMS is already
equipped with these capabilities by design.

The best results in terms of window of inconsistency tw are
attained by the pushing method, since the controller directly
informs the NMS in case of network state changes. Hence, the
vital information, on which basis the NMS performs the legacy
device configuration, are present within an instance.

VI. CONCLUSION

During the migration from legacy to SDN-enabled net-
works, a coexistence of both technologies is inevitable. For
this reason we discussed and evaluated possible realizations
of a distributed control plane for heterogeneous SDN and
legacy networks. The challenge of this heterogeneous network
scenario was to keep the SDN and legacy control instances
synchronous which in turn enables a seamless flow of traffic
between both network domains.

As a basis for this heterogeneous network scenario we
chose the SarDiNe BYOD setup which provided the required
dynamics for our evaluation. We extended this setup by a
legacy network domain, comprised of a legacy device and
the commercial NMS StableNet, which acted as the control
instance for the legacy network. Further, we designed a data
model which is used to build a common data basis for a
network state exchange between both control instances and
discussed the synchronization process between the SDN con-
troller and the NMS. For this we implemented three different
methods, namely polling, pushing, and direct.

We evaluated these three methods by three metrics, inter-
connection time , window of inconsistency , and time to first
packet out. The first two metrics provide insights into the
control plane’s behavior whereas the last metric resembles the
behavior of the forwarding plane.

In future work we focus on the optimization of the NMS’s
implementation regarding the polling and pushing method. For
the polling method a prioritized alarm execution, which is not
queued when emerging, but directly executed, might reduce

the interconnection time. The window of inconsistency for the
polling method could be reduced by directly implementing
the functionality into the NMS’s code and not relying on
an external measurement script. This allows for more fre-
quent measurements and for more sophisticated scheduling
techniques. A reduction in the interconnection time for the
pushing method could possibly be achieved by implementing
a prioritized REST endpoint for the configuration job execution
and a increasing the job’s priority. For these and further
investigations the implemented prototype provides a solid
foundation.
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