Deutsch Intern
Chair of Computer Science III

Katharina Dietz M. Sc.

Telefon (0931) 31-87343
E-Mail katharina.dietz@informatik.uni-wuerzburg.de
Raum A212

Anschrift

Lehrstuhl für Informatik III
Am Hubland
D-97074 Würzburg

Lectures (Teaching Assistant)

  • Leistungsbewertung verteilter Systeme (LBVS) (SS24)
  • Leistungsbewertung verteilter Systeme (LBVS) (SS23)
  • Leistungsbewertung verteilter Systeme (LBVS) (SS22)
  • Steuerungsprinzipien moderner Kommunikationssysteme (SKS) (WS20/21)

Seminar Talks (Tutor)

User-centric Communication Networks (UCN) (SS24)

  • D. L.: Explainable AI (XAI) for Anomaly Detection in Communication Networks
  • E. N.: Personas in Cybersecurity and/or Network Monitoring Contexts

User-centric Communication Networks (UCN) (SS23)

  • T. S.: Transfer Learning Approaches for Network Security/Intrusion Detection

User-centric Communication Networks (UCN) (WS22/23)

  • M. E.: MimicNet: Fast Performance Estimates for Data Center Networks with Machine Learning (based on the SIGCOMM Paper by Zhang et al.)

User-centric Communication Networks (UCN) (SS22)

  • P. A.: Graph Neural Networks for Malware Detection

User-centric Communication Networks (UCN) (WS21/22)

  • Y. S.: Firewall Fingerprinting
  • A. N.: Malware Fingerprinting

User-centric Communication Networks (UCN) (SS21)

  • M. S.: QoE and Privacy
  • B. H.: QoE and Security

User-centric Communication Networks (UCN) (WS20/21)

  • P. K.: Reinforcement Learning for Traffic Routing
  • M. E.: Reinforcement Learning for Network Security

Next Generation Networks (NGN) (SS20)

  • L. R.: SDN in the Datacenter: Usecases and Challenges
  • A. R.: SDN outside the Datacenter: SD-WAN and Co.

Supervised Theses

  • 1.
    Ziegler, K.: Comparison of Explainable AI (XAI) Techniques for Flow-based Anomaly Detection in Communication Networks, (2024).
  • 1.
    Gerlach, T.: Adjusting Live-Traffic to Match a Given Packet Trace, (2024).
  • 1.
    Werner, D.: Simulative Evaluation of (In-)Confident Machine Learning for User-based Active Learning, (2023).
  • 1.
    Michler, J.: Correlating Machine Learning Confidence to Outlier Detection for Network Monitoring Tasks, (2023).
  • 1.
    Glauer, S.: Experimental Evaluation Tool for Exploring User-based Active Learning for ML-based Browser and URL Detection, (2022).
  • 1.
    Ceanuri Devesa, J.K.: Performance Evaluation of Feature Representation Transfer Approaches for Video QoE Estimation Across Different Networks, (2022).
  • 1.
    Sichermann, M.: Building a GAN from Scratch for Synthesizing Data Samples for the Use Case of Browser Fingerprinting, (2022).
  • 1.
    Ebner, M.: Plausible Performance Prediction of Simulated SDN-enabled Networks via Machine Learning, (2021).
  • 1.
    Khelloqi, S.: Evaluation of Data Augmentation for Machine Learning on Network Traffic, (2021).