Deutsch Intern
  • none
Computer Science XI - Modeling and Simulation

Open Thesis

Available Bachelor Thesis Topics

Beschreibung

Der hydraulische Abgleich in Heizungsanlagen sorgt dafür, dass die Wärme im Haus gleichmäßig über die Heizkörper verteilt wird. Zu diesem Zweck gibt es Berechnungsschemata, die auf verschiedenen Parametern basieren, die oft geschätzt werden müssen. Ziel der Bachelorarbeit ist es, die Schätzungen durch einen Feedback-Mechanismus zu verbessern, indem der vorhergesagte und gemessene Energieverbrauch und die Temperaturen iterativ verglichen werden. Das Modell soll mit einfachen Simulationen von Heizungsanlagen in Häusern getestet werden. Im Erfolgsfall kann der Ansatz dazu beitragen, die Energiebilanz von Heizungsanlagen deutlich zu verbessern.

Voraussetzungen

  • Eigenständiges Arbeiten
  • Sicherer Umgang mit Python

Kontakt

  • Prof. Dr. Frank Puppe, frank.puppe@uni-wuerzburg.de
  • Prof. Dr.-Ing. Marco Pruckner, marco.pruckner@uni-wuerzburg.de

Sprache

  • Deutsch

Ambitionierte Flottenziele der Bundesregierung sowie das Aus für Verbrennerfahrzeuge spätestens 2035 führen auch in der Car-Sharing Branche zu einem Wandel hin zur E-Mobilität. Aufgrund der deutlich höheren Anschaffungskosten für die Fahrzeuge sowie die Investitionskosten in Ladesäulen muss hierbei jedes Kosteneinsparungspotenzial genutzt werden. Eine Möglichkeit ist dabei die Nutzung von V2G Technologie, bei der die Batterien der Fahrzeuge während ihrer Standzeit zur Netzstabilität beitragen oder Profite durch Arbitrage erzielen. Im Zuge dieser Arbeit soll die Vereinbarkeit von Vehicle-2-Grid mit Car Sharing Fahrzeugen untersucht werden und eventuelle Profitpotenziale evaluiert werden. Zusätzlich kann die Einführung eines Stationärspeichers als Puffer für geringere Netzlast und eine Reduktion der Stromkosten untersucht werden.

Voraussetzungen

  • Eigenständiges Arbeiten
  • Sicherer Umgang mit Python

Kontakt

  • Prof. Dr.-Ing. Marco Pruckner, marco.pruckner@uni-wuerzburg.de
  • M. Sc. Jonas Schiller, jonas.schiller@uni-wuerzburg.de

Sprache

  • Deutsch
  • Englisch

Die Nutzung von stationsgebundenen Car-Sharing Fahrzeugen schwankt stark von Station zu Station. Gerade bei der Planung neuer Stationen wäre jedoch eine fundierte Vorhersage der zukünftigen Auslastung wichtig. Deshalb soll in dieser Bachelorarbeit basierend auf geografischen und wirtschaftlichen Daten wie beispielsweise Points Of Interest in der Nähe der Station oder der lokale Mietspiegel zunächst eine Regressionsanalyse für bestehende Stationen durchgeführt werden und basierend darauf eine Vorhersage für potentielle Stationen erstellt werden.

Beschreibung

Die Elektrifizierug des öffentlichen Nahverkehrs im Zuge der Verkehrswende erfordert es, den Energiebedarf zur Bewältigung der Fahrpläne abzuschätzen, um die notwendige Ladeinfrastruktur (Anzahl Ladepunkte, Ladeleistung) und den Netzanschluss entsprechend dimensionieren zu können. Ziel dieser Bachelorarbeit ist es, eine Methodik für die Abschätzung des Energiebedarfs anhand von offenen Daten wie Liniennetzplänen und Kartendaten zu entwickeln. Zusätzlich soll auf Basis der Literatur ein Regressionsmodell zur Identifikation wichtiger Parameter wie Außentemperatur, Streckenprofil, Topologie etc. entwickelt werden.

Voraussetzungen

  • Eigenständiges Erarbeiten von Lösungsansätzen
  • Sicherer Umgang mit Python zur Datenaufbereitung und Modellierung

Kontakt

Sprache

  • Deutsch
  • Englisch

Available Master Thesis Topics

Description

Realistic mobility demand is an essential input for various scientific simulations. For example, we can model the spread of diseases better if we can determine what groups of people come into regular contact. Other examples are the performance evaluation of close-range peer-to-peer communication systems and transportation system planning. However, for privacy reasons, it is not desirable to track the movement of the entire population of a country to acquire the necessary data. Instead, it is better to create synthetic mobility demand with an agent-based simulation that is representative of the original population without intruding on the privacy of individuals.

This is the purpose of the open-source mobility demand generator OMOD we developed at our chair (https://github.com/L-Strobel/omod).

A crucial step in creating synthetic mobility demand is determining where people will conduct activities like shopping or working. In classical models, this is done in two steps. First, the number of trips that originate and end in all locations is determined with linear models. Then, a so-called gravity model connects origins and destinations (See Modelling Transport, Ortúzar and Willumsen).

In OMOD, we use a similar approach adapted to fit the agent-based viewpoint. However, this approach runs into limitations if non-linear features are to be included for the attractiveness of a location. For example, there is a complex relationship in clusters of shops. On the one hand, a group of shops might be more attractive than the sum of its parts because a person could shop for multiple things at once there; think of a city center. On the other hand, at some point, a location already provides a shop for most things, and shops start to compete, reducing the marginal attractiveness of additional shops.

Another problem that arises from the classical formulation is finding a suitable calibration for the parameters of the function. This is usually done using the maximum likelihood method. However, solving the resulting optimization is increasingly difficult with a rising number of parameters. Therefore the methodology is limited in its ability to model more complex relationships between mapping information and sociodemographic-features of individuals.

The goal of this work is to find alternatives to the classical implementation of the destination choice using modern machine learning techniques, such as neural networks. The techniques can be applied to directly determine the destination choice or, alternatively, to find suitable parameters for the old implementation. 

Requirements

Necessary:

  • Confident with Python

Helpfull:

  • Understanding the Maximum-Likelihood concept
  • Experience with a machine learning library

Contact

Leo Strobel, leo.strobel@uni-wuerzburg.de

Description

In agent-based transport models, it is necessary to determine the shortest path between an agent's current location and destination to simulate the agents' decision-making process. Algorithms for finding the shortest path on a network are well understood and applicable (Dijkstra). However, we must determine thousands of paths per agent for millions of agents in agent-based models. Therefore, determining the shortest paths is often the bottleneck of the simulation. The problem is especially prevalent in public transit decisions, where finding the shortest path depends on the weekday and time of day because of irregular schedules.

The goal of this thesis is to create a lightweight public transit router based on publicly available GTFS files (https://developers.google.com/transit/gtfs). A GTFS file parser is already available, and routing algorithms from existing libraries can be used. The focus of the thesis should be on searching the literature for applicable routing algorithms and methods to simplify the routing graph to obtain approximate solutions. The algorithms are then to be implemented and evaluated regarding runtime and accuracy of the resulting travel duration.

Requirements

Necessary:

  • Experience with Java or Kotlin
  • Basic knowledge of shortest path algorithms (Dijkstra)

Helpfull:

  • Experience with handling data tables (>= 100 k rows)

Contact

Leo Strobel, leo.strobel@uni-wuerzburg.de