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Abstract
The increasing complexity and application of Machine Learning (ML) models necessitate the need
for interpretable and reliable explanations to support decision-making, particularly in critical fields
such as healthcare. Explainable Artificial Intelligence (XAI) techniques help to gain trust by providing
explanations to the opaque black-box models. However, it is challenging to find the best methods
bearing high explainability amongst multiple approaches. In this paper, we present a novel approach
to quantifying the explainability of ML models, focusing on the key characteristics of stability and
robustness. Our framework is demonstrated using a mortality prediction dataset for stroke patients,
highlighting the practical implications of our approach and proving its general applicability. This
research contributes to the field of XAI by providing a comprehensive, automated evaluation of model
explainability facilitating the model life cycle and decision-making processes for different settings.

Keywords
Explainable AI, Explainability, Machine Learning, BI, Stability, Robustness

1. Introduction

The growing power of ML models manifests in an increasing number of applications of such
models in a variety of modern systems. Through their support humans can solve complex
problems more efficiently and accurately. However, human subjects are still responsible for the
decision for specific actions to be taken based on the model outputs and need to understand
the behavior and reasoning behind the prediction. Unfortunately, this is not always the case
and complex problems, in particular, often require incomprehensible but powerful models
(black-box). The generation of explanations for a certain output enables more sound decision
making and prevents blindly following the machine’s suggestion.

Finding the optimal decision is crucial in fields such as medicine where the health of individ-
uals is in threat. Especially, the prediction of mortality in conjunction with severe diagnoses
(e.g., heart failures or strokes) can be life-saving if the risk of death is recognized and treated
accordingly. For this it is extremely helpful if doctors are not only presented with the prediction
of a model but additionally have access to explanations facilitating their evaluation of the situa-
tion. As not every model is well explainable, there is a growing interest in the assessment of
the explainability of models. Ideally, expressive explainability measures enable model selection
and estimation of the reliability of the explanations to improve the decision making.
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In our work, we investigate on the automated labelling of ML models for the abstract criteria
of explainability. To this end, we propose an explainability quantification based on the two
characteristics stability and robustness. For each, a general, model-, explanation type-, and data-
agnostic formula is presented that allows to quantify explanation stability and robustness for
various scenarios with an intuitive value. We assemble a mortality prediction dataset for a cohort
of stroke patients, which we analyze regarding the benchmark of the proposed explainability
quantification approach. Furthermore, we also benchmark our measures for a classic visual
classification task of handwritten digits. The rest of this work is organized as follows: Section 2
briefly illustrates recent approaches similar to our research, which is presented in Section 4.
The cohort selection for our stroke dataset, the preprocessing, and classification model are
described in Section 5. The results of the explainability benchmarks are discussed in Section 6.
A summary and an outlook into future research directions are given in Section 8.

2. Related Work

There has been an uprising interest in the field of XAI in the past decade. Explaining the outputs
of a black-box model trained with ML techniques to predict the class label of an unseen input is
quite valuable in different scenarios. Adadi et al. [1] describe justification, control, improvement
and discovery as reasons for generating explanations for black-box model predictions. These
important factors induce benefits like transparency for the model’s behavior or the potential for
interactivity or refinement. Next to their predictive capabilities, the generation of explanations
supports the trust in ML models [2] and yields important insights that aid decision making.
In their review, Vilone et al. [3] give a systematic overview on publications using notions
that have some relation to explainability, XAI methods and evaluation approaches. Their
study hierarchically categorizes evaluation metrics for the different explainability attributes as
objective automated or human-centered manual approaches.

Model Cards [4] or Data Sheets [5] formally describe AI models and training data to assess
their applicability in other use cases and ideally certify of trained models. Seifert et al. [6]
propose a framework for creating consumer-friendly labels for machine learning models to
enhance transparency and trust. It introduces a method to summarize complex model char-
acteristics into understandable labels, akin to nutrition labels on food products. The authors
outline the design, evaluation, and implementation of these labels, emphasizing their potential
to inform users about model performance, data usage, and ethical considerations. Nauta et al.
[7] provide a comprehensive overview of the evaluation methodologies for XAI highlighting
the shift from anecdotal and qualitative assessments towards more rigorous and quantitative
evaluation frameworks. The authors categorize existing evaluation methods as Co-12 properties
and identify gaps, emphasizing the need for standardized and reproducible metrics. The paper
concludes by proposing a set of best practices and future directions to enhance the robustness
and reliability of XAI evaluations. Chmielinski et al. [8] introduce an enhanced version of the
dataset nutrition label, aimed at improving transparency and understanding of datasets used in
AI development. It emphasizes the importance of context in mitigating potential harms by pro-
viding detailed metadata about the datasets, including their origin, composition, and potential
biases. The authors propose a standardized framework for dataset documentation, facilitating



better-informed decision-making in AI deployment. Liang et al. [9] provide a comprehensive
analysis of AI model documentation by examining 32,000 AI model cards. The authors identify
common practices, gaps, and inconsistencies in AI model documentation, showing the need
for standardization and improved transparency. They categorize the documented information
into various dimensions, such as intended use, performance metrics, and ethical considerations,
and evaluate the prevalence and quality of these dimensions. Boggust et al. [10] introduce a
comprehensive framework for evaluating and comparing saliency methods, which are tech-
niques used to interpret machine learning models by highlighting important input features.
The authors present “Saliency Cards”, a structured approach that categorizes these methods
based on various dimensions such as methodology, output, and application context, facilitating
a systematic comparison. The paper aims to provide insights into the strengths and weaknesses
of different saliency methods. Tagliabue et al. [11] propose the DAG Card as an extension and
enhancement of the Model Card concept. It introduces Directed Acyclic Graph (DAG) structures
to represent complex AI models and their deployment scenarios comprehensively. The DAG
Card aims to provide detailed explanations of model architecture, data processing steps, and
performance metrics across different stages of a model’s lifecycle.

While these papers emphasize the importance of XAI, their focus lies on a descriptive assess-
ment but not on a framework to quantify the explainability of AI models. Instead, a framework
with visual components like an easy-to-use, web-based dashboard [12] presents compressed
information about the model characteristics like its explainability. The quantification of model
explainability reaches a broad audience (e.g., management, developer team, end users) as the
offered information can be consumed easily. As a major benefit, the usage of such tools amplifies
the integration of AI into workflows while increasing the understanding of and trust in AI.

Two interesting notions related to explainability are robustness [13, 14] and stability[15],
which are investigated in this work and formal definitions are proposed to calculate metrics for
the assessment of explainability based on these notions. Both suggested criteria fall under the
Co-12 [7] concept of continuity, i.e., the generalization capability of an XAI method. However,
all of the categorized continuity approaches fail to generalize as they are explicitly formulated
for a certain classification model, explanation type, explanation distance, or data type. As
solution to this, we instead aim for a general formulation of our metrics to be applicable to a
wide variety of scenarios and not being dependent on specific properties.

3. XAI Business Use Cases

In general, our framework can handle XAI in several different business use cases:

• XAI in the classification of tabular data. For example, in the health care domain data often
come as electronic health records (EHR) in a tabular format on which a medical decision
support system can be based. Explanations for model predictions improve the outcome
for the patient by providing additional information to the medical staff.

• XAI in visual classification where data come as images and have to be classified in
an automated way, e.g., filtering faulty products in a production line or processing
handwritten documents automatically for digital archiving.



• Text classification as a subpart of natural language processing (NLP) that can be used for
automated customer support (like chat bots or automated response systems) or in the
area of marketing (like social media analysis or continuous customer feedback analysis).

For each of these use cases, XAI methods can effectively improve the usage of self-service
ML by supporting decision making and reasoning. The AI model lifecycle is enhanced by the
additional information developers and stakeholders are presented with, e.g., in model debugging
and selection or gaining insights and trust into the behavior of the black-box. Ideally, the
XAI methods demonstrate capabilities of the model in a comprehensible fashion not only for
ML experts but also end user or even experts of other fields like medicine or finance. The
generated explanations help to improve processes by highlighting potential weaknesses or
revealing critical failures. In the scope of this article, we apply our two proposed explainability
metrics exemplary to two different scenarios. As pointed out in the previous section, our general
quantification approach overcomes the limitation of previous works where only problem-specific
computations were carried out. We benchmark our metrics for the explanations generated
for two use cases: a stroke mortality tabular classifier and a handwritten digit visual classifier.
The results demonstrate the practicality of our approach and enable judging and comparing
explanation generation across XAI methods.

4. Explainability of XAI Methods in Classification Problems

XAI comprises methods to make the outputs of AI systems understandable and interpretable
to humans. From a Business Intelligence point of view, the deployment of AI tools makes is
mandatory that users and stakeholders can comprehend how and why an AI system reaches
certain conclusions or predictions. The application of XAI methods facilitates the interpretation
of the decisions in business analytics settings and automates the generation of explanations.
However, the quality of the presented explanations is to be assessed to draw justified conclusions.

There exist multiple definitions of model explainability or interpretability (often used syn-
onymously) referring to the capability to extract “the meaning of an abstract concept” [3].
Explainability is related to and often built on top of several characteristics, e.g., transparency,
faithfulness or understandability. A superior explainability is therefore bound to a high-quality
adherence by the explanations of the model outputs to its building blocks. For example, a
transparent model is per-definition more explainable than an opaque one and explainability
requires the explanations to be understood by humans. Our research focuses on the as far as
possible automated evaluation of explainability metrics for a tabular binary classifier such that
no human interaction is required and the generation of a label for explainability is simple. To
this end, we propose two novel, general-purpose measures for characteristics of explainability,
namely stability and robustness, in the following.

We denote the explanation generation for instance 𝑥𝑖 or – more precisely – the prediction of
𝑥𝑖’s class label,𝑀(𝑥𝑖), through the classifier𝑀 by 𝐸𝑀(𝑥𝑖). The explanation generationmechanism
𝐸𝑀 is required to support local explanations, e.g., a SHAP [16] or lime [17] tabular explainer. The
expression 𝐸𝑀({𝑥1, … , 𝑥𝑝}) then refers to the set of explanations {𝐸𝑀(𝑥𝑖) | 𝑖 ∈ {1, … , 𝑝}} generated
for an input set of 𝑝 instances. Based on an explainer 𝐸𝑀 for a classifier 𝑀, an evaluation
function 𝑓𝑊(𝐸𝑀) ∈ [0, 1] measures a specific characteristic 𝑊 of the explainer. An evaluation



value of 𝑓𝑊(𝐸𝑀) close to 1 indicates a high performance of 𝐸𝑀 regarding𝑊 and a value closer to
0 shows that 𝑊 is satisfied only weakly or insufficiently. To summarize different characteristics,
a single value is calculated as judgement of the capability of 𝑀 of being well explainable by 𝐸𝑀,
e.g., as a weighted sum ∑𝑧

𝑖=1 𝜔𝑖 ⋅ 𝑓𝑊𝑖(𝐸𝑀) over characteristics 𝑊1, … ,𝑊𝑧.

4.1. Stability of Explanations

Explanation generation is considered stable if similar instances with the same labels have
similar local explanations [15]. The most direct way to calculate the stability is to find a set
of neighboring instances 𝑁(𝑥𝑖) = {𝑥𝑗1 , … , 𝑥𝑗𝑘} for each instance 𝑥𝑖 in (a subset of) the dataset,
e.g., with a 𝑘-nearest neighbor graph. Then, the average similarity or distance between the
explanation 𝐸𝑀(𝑥𝑖) and the set of explanations 𝐸𝑀(𝑁 (𝑥𝑖)) = {𝐸𝑀(𝑥𝑗1), … , 𝐸𝑀(𝑥𝑗𝑘)} of the neigh-
boring instances measure explanation stability. Our heuristic quantifies this property by the
similarity of groups of explanations according to a grouping of the dataset instances. Therefore,
clustering techniques divide the dataset into meaningful groups of similar instances in an
unsupervised manner. Applied to both, two clusterings 𝐶𝐷 and 𝐶𝐸 are computed for the data
in 𝐷 and 𝐸 = 𝐸𝑀(𝐷), respectively. The more similar the resulting clusterings are, the more
stable are the explanations generated by 𝐸𝑀. In the following definition we extend the stability
estimation by using sets of 𝑞 clusterings for both 𝐷 and 𝐸.

Definition 4.1. Given the two sets 𝐶𝐷 = {𝐶𝐷1 , … , 𝐶𝐷𝑞 } and 𝐶𝐸 = {𝐶𝐸1 , … , 𝐶𝐸𝑞 } of 𝑞 clusterings
of a dataset 𝐷 and its explanations 𝐸 = 𝐸𝑀(𝐷), respectively. The stability of the explanations
generated by 𝐸𝑀 is defined as the maximal pairwise clustering similarity:

𝑓𝑆𝑡𝑎𝑏(𝐸𝑀) = max
𝐴∈𝐶𝐷,𝐵∈𝐶𝐸

𝑆𝑖𝑚(𝐴, 𝐵) (1)

The clustering similarity can be computed by selected external cluster validation indices
(CVI) that operate on a clustering 𝐶 given external information like the cluster labels from a
reference clustering 𝐶′. The Rand Index (RI) therefore assesses 𝑆𝑖𝑚(𝐶, 𝐶′) by the ratio of pairs
of objects that happen to be in the same or different clusters in both clusterings compared to all
object pairs. Thus, the ratio yields the probability that 𝐶 and 𝐶′ partition a random selected pair
of objects in an identical fashion. The Adjusted Rand Index (ARI) [18] overcomes the lack of a
baseline in the RI. It corrects it for the chance by considering the expected agreement between
both clusterings. It ranges in [−1, 1] where -1 refers to a completely different label matching, 0
to a random label matching, and 1 to a perfect label matching. Our approach allows to vary the
clustering methods and adapt them to the dataset with a suitable distance metric.

4.2. Robustness of Explanations

Robustness refers to the independence of marginal changes when processing inputs [13, 14]. As
a consequence, marginal changes of data points not affecting the model’s prediction should also
lead to marginally divergent or identical explanations. This is closely related to the concept of
stability with some variation in the level of granularity with which both approaches operate.
Analogous to the stability, it could be measured using a more fine-grained clustering to average
the intra-cluster explanation distances or a 𝑘-NN graph to aggregate the explanation distances



of neighboring data points with the same label for a small 𝑘However, it is not trivial to automate
the clustering process to ensure a fine granularity and clusters mimicking subsets of marginally
different data points. This neighbor approach depends on the dataset structure and requires
dense regions of data points to find enough neighbors. Instead, marginal differences of the data
points can be sampled artificially from data points with minimal distance. This also emphasizes
more on the distinction of robustness and stability (synthetic data vs neighboring instances).
Hence, the explanation distances for the sampled data points and their origin measure the
robustness. The smaller these distances are, the more robust the explanations are.

Definition 4.2. Given a subset size 𝑠 and a number of samples 𝑘, the robustness of the explana-
tions generated by 𝐸𝑀 is measured as

𝑓𝑅𝑜𝑏𝑢(𝐸𝑀) = 1 − 1
𝑠 ⋅ 𝑘

∑
𝑥∈𝑋

∑
𝑦∈𝑄𝑘(𝑥)

𝑑(𝐸𝑀(𝑥), 𝐸𝑀(𝑦))
max
𝑥′,𝑦 ′∈𝐷

𝑑(𝐸𝑀(𝑥′), 𝐸𝑀(𝑦 ′))
(2)

where 𝑋 ⊆ 𝐷 is a subset of |𝑋 | = 𝑠 data points, 𝑄𝑘(𝑥) is a set of 𝑘 marginally changed samples
of 𝑥 with 𝑀(𝑥) = 𝑀(𝑦), 𝑦 ∈ 𝑄(𝑥), and 𝑑(⋅, ⋅) ≥ 0 is the pairwise explanation distance.

The robustness (Eq. 2) is estimated using a random subset 𝑋 ⊆ 𝐷 of 𝑠 data points from
𝐷. For each data point 𝑥 ∈ 𝑋, 𝑘 marginally different samples 𝑦 ∈ 𝑄𝑘(𝑥) are generated. The
distances between the explanations 𝐸𝑀(𝑦) of the samples 𝑦 and the explanation 𝐸𝑀(𝑥) for the
sample origin 𝑥 are normalized by the maximum distance and averaged over all 𝑠 data points of
the subset 𝑋. The normalization provides the convenience of a more interpretable robustness
value 𝑓𝑅𝑜𝑏𝑢(𝐸𝑀) ∈ [0, 1] where 1 indicates robust explanations (that still have high similarity)
and 0 refers to the explanation generation being affected by marginal changes (low similarity
between the explanations of marginally different inputs). Actually, the robustness might also
be slightly negative in specific cases due to the normalization constant. However, depending
on the sampling mechanism 𝑄𝑘(𝑥), there will be only small distances between original and
sampled explanations such that quotient will be smaller than 1. It should always be checked
that the model prediction is unchanged for a slightly perturbed input [19]. Enforcing the same
predicted label 𝑀(𝑥) = 𝑀(𝑦) of the samples in Def. 4.2 also decreases explanation distances in
comparison to the distance for a pair 𝑥′, 𝑦 ′ ∈ 𝐷 with different predicted labels most of the time.

5. Experimental Setup

5.1. Feature Extraction and Preprocessing

Even though people tend to rely on AI to obtain useful insights without further guidance,
usually still a certain degree of feature extraction and data preprocessing are needed. In fact,
these steps ensure that the data used to train AI models is correct and relevant for the intended
purpose, which in turn again enhances the reliability and interpretability of the AI outputs.
Useful techniques that should be applied to data before AI training comprise data cleaning
(removing noise, errors, and inconsistencies that may only be identified by a human expert);
missing values handling (where the usefulness of techniques like proper imputation may be a
question that can only be answered by humans) and standardization and normalization (where



appropriate techniques should be carefully chosen by humans depending on the use case).
Hence, preprocessed data may lead to cleaner and more understandable models. This makes
it easier to apply XAI techniques, which rely on the quality of the underlying data to provide
meaningful explanations. More technically, in terms of feature importance, XAI methods like
SHAP or LIME can more accurately determine the importance of different features if they are
exposed to a manually determined subset of the entire feature set; dimensionality reduction
itself can simplify the model, making it easier to interpret without any performance impact.
Moreover, data preprocessing may identify and reduce any biases contained in the data, which
is essential for XAI to provide fair and unbiased explanations.

For the experiments regarding explanation stability and robustness, we generated a real-
world dataset from medical data obtained from the MIMIC-III (v1.4) [20] database. The database
comprises hourly measurements from 58k hospital admissions of 45k de-identified patients
in ICU in the Beth Israel Deaconess Medical Center, Boston, from 2001-2012. A multitude of
features was measured per patient on an hourly basis in over 58k hospital admissions of 45k de-
identified patients in ICU and successfully implemented in previous research [21, 22]; MIMIC-III
has already been successfully implemented in previous research papers and was the basis for
public PhysioNet challenges1. Thus, this dataset presents a reliable source with sufficient size for
ML. The dataset was imported into PostgreSQL and necessary database setup files for this were
distributed by PhysioNet2 (detailed setup process in [23]). Amongst the admissions, we exclude
underage patients or records with missing data and keep only patients with “chart_events”-data
(cf. [24]). Moreover, duplicated patients with multiple ICU transfers within a single hospital
stay are removed. Based on previous research [25], all ICU-stays shorter than 24h are filtered
out due to insufficient data resulting in 32k admissions. Often one would also filter for a specific
hospital database system (“CareVue” vs. “metavision”) as it is challenging to map roughly 12k
CareVue variables, encompassing vital signs and lab events, to 2k metavision variables and
integrating both systems is a major task in itself. Thus, only selected chart_events are mapped
for our use case of stroke mortality prediction, combining hemorrhagic and ischemic cases.
Cohort selection is based on the ICD9-codes of the diagnosis at admission: (1) hemorrhagic, (2)
ischemic, and (3) other stroke types (incl. late effects). For further analysis, we pre-select 40
relevant features including patient demographics and their diagnosis. The patient vitals and lab
results are selected as guided by medical expertise from previous research. One feature of note
is the OASIS Score3, which represents a common and insightful index for patient mortality risk
and helps comparing new prediction models with the status quo. The calculation of the score
depends on multiple factors (ventilation, pre-ICU length of stay, etc.).

The careful preprocessing and filtering of admissions and measurements4 leaves 9 mixed
features for mortality prediction (e.g., OASIS score) including gender and ethnicity for 2655
unique ICU stays with diagnosis of (1) hemorrhagic, (2) ischemic, or (3) other stroke types (incl.
late effects). We trained an XGBOOST (eXtreme Gradient Boosting) classifier to predict mortality
of patients with such diagnosis (AUROC: 0.894, Accuracy: 0.868, Recall: 0.653, Precision:
0.511). The prediction results are not as performant as desirable but we refrained from further

1https://physionet.org/about/challenge/moody-challenge
2https://github.com/MIT-LCP/mimic-code/tree/main/mimic-iii
3https://github.com/caisr-hh/Dayly-SAPS-III-and-OASIS-scores-for-MIMIC-III
4Details under https://github.com/jeschaef/explainability
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optimizations as our analysis focuses on quantifying explanation stability and robustness.

5.2. Tabular Classification

For the explainability evaluation of the model on the stroke cohort, we computed the stability
using three different clustering algorithms: k-Means, hierarchical and spectral clustering. The
number of clusters 𝑘 can be controlled in each of them allowing for a straightforward creation of
𝑞 different clusterings by scaling 𝑘. We employed the ARI, Adjusted Mutual Information (AMI)
and V-Measure (V) to find the maximum similarity of a pair of clusterings for assessing stability.
The explainers for the generation of explanations of the tabular classifications are SHAP [16],
lime [17], Anchor [26] and Accumulated Local Effects (ALE) [27]. The chosen distance metrics
are the common Euclidean distance || ⋅ ||2 for SHAP, lime and ALE, and the Jaccard distance
on the subsets of data points satisfying the anchors. The sampling function 𝑄𝑘(𝑥) uses the
Signal-To-Noise-Ratio (𝑆𝑁𝑅) as additional parameter scaling the perturbation added to 𝑥.

5.3. Visual Classification

The classification of images for certain task is another popular field of ML. There exist various
examples proving the strength of visual classificationmodels in comparison to human evaluation.
For example, this can be applied to diagnose with medical images like ECG or CT measurements
or to detect faulty objects in production lines. In addition to powerful models, it is often helpful
being able to gather additional information to the model’s prediction. The visual classification
models are then usually explained by XAI methods that highlight certain areas of interest in
the images, e.g., heatmaps for feature attribution, activation or saliency.

We apply our proposed explainability metrics for the example of the classification of handwrit-
ten digits with the famous MNIST dataset. This demonstrates the applicability of our measures
for visual classification, which is different from the previously discussed tabular classification
with regards to the type of data, the generated explanations and their respective distances. To
this end, we train a basic CNN classification model by finetuning a pretrained VGG16 model to
distinguish images of written zeros and ones and generate explanations in form of heatmaps
using Grad-CAM [28] and Occlusion Sensitivity (OS). The heatmap distances are calculated
using some common image similarity methods: Mean-Squared Error (MSE), Cosine-Similarity,
and the Structural Similarity Index Measure (SSIM). The cosine similarity is computed for the
flattened heatmaps. The sampling method for the robustness assessment simply adds gaussian
noise (controlled by SNR) to a given image to perturb it and generate new sample images. To
assess stability, distance matrices are precomputed for the pairwise heatmap distances and
clustered hierarchically (SLINK). The cluster similarities indices are the same as before.

6. Results

6.1. Stroke Mortality Prediction

In Fig. 1, the stability results of the SHAP explainer are shown in form of heatmaps for the
pairwise clustering similarities where the subfigures (a)–(c) each show three heatmap plots
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(a) 𝑘-Means
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Figure 1: Stability 𝑓𝑆𝑡𝑎𝑏(𝐸𝑀𝑀) of the SHAP explanations of the XGBoost classifier. The x- and y-axes
show the number of clusters of the dataset and explanation clustering, respectively. The color brightness
indicates the height of the similarity value according to the scale next to each plot.

for each similarity for a single clustering algorithm with 𝑘 ∈ [3, 20]. All plots reveal a slight
tendency towards pairs of clusterings with more clusters. For each clustering algorithm, one
can also notice that the heatmaps are quite identical looking despite some minor deviations and
the same patterns can be found more or less in the heatmap of each CVI. The main differences
are the scales of the respective CVI, e.g., the maximal values were 0.23 (ARI), 0.41 (AMI) and
0.46 (V) with k-Means (Fig. 1a).

The smooth transitions of the “heat” in the plots of the hierarchical clusterings are caused
by the marginal changes between clusterings with different numbers of clusters 𝑘 and just
different heights in the same underlying dendrogram. The maximum ARI values of the three
clustering methods are also very similar (𝜎2 ≈ 10−4) whereas the maximum AMI and V values



10 2 10 1 100 101 102 103

SNR

0.5

0.6

0.7

0.8

0.9

Ro
bu

st
ne

ss
SHAP
lime
Anchor
ALE
avg

(a) SNR (𝑠 = 𝑘 = 10)
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(b) 𝑠 (SNR= 103, 𝑘 = 10)
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(c) 𝑘 (SNR= 103, 𝑠 = 10)

Figure 2: Robustness 𝑓𝑅𝑜𝑏𝑢(𝐸𝑀) benchmark with different parameters being scaled. The parameter value
is mapped on the x-axis and the robustness on the y-axis. The colors indicate the different explainers (or
average of all explainers).

diverge slightly more (𝜎2 ≈ 10−3) but show the highest similarity value for k-Means clusterings
and the lowest for spectral clusterings. The results for the other explainers reveal less stable
explanation generation with lime and ALE (max. similarity values 0.06-0.21 and 0.09-0.2) and a
poor performance of Anchor (max. similarity values 0.0-0.1) due to unsuitable clusterings of
the explanations based on the Jaccard distance.

The robustness evaluation of the four explainers on our classifier is shown in Fig. 2. The
results of the individual scaling the three different parameters of 𝑓𝑅𝑜𝑏𝑢 while fixing the other
parameters is displayed in its three subfigures (a)-(c). The 𝑆𝑁𝑅 has the main influence on the
result of robustness as it controls the distance of the sampled data points (Figure 2a). With
an increasing 𝑆𝑁𝑅 also the estimated robustness increases as less perturbation is added in
the sampling leading to less distance. The subset size 𝑠 (Fig. 2b) and the number of samples 𝑘
(Figur e2c) do not scale the robustness at all (even for 𝑠 or 𝑘=5) but just decrease the fluctuation
of the resulting robustness. Overall, 𝑠 and 𝑘 might be dependent on the number of data points,
thus, it might be required adapting them for other, larger dataset sizes. For the stroke dataset,
𝑘, 𝑠 ∈ {5, 10} already suffice for steady results and can be computed quicker. For 𝑆𝑁𝑅 = 103, the
SHAP and ALE explainer provide the most robust explanations (𝑓𝑅𝑜𝑏𝑢 ∈ [0.8, 0.9]) and the lime
and Anchor explainer perform slightly worse (𝑓𝑅𝑜𝑏𝑢 ∈ [0.5, 0.7]).

In total, the explainability composed out of the two characteristics robustness and stability
is 0.71 (SHAP), 0.46 (lime), 0.36 (Anchor) and 0.55 (ALE). Here, we assumed equal weights
and the maximal robustness and stability result of each explainer. Even for the combination
of only two characteristics it is hard to interpret this explainability value. Nevertheless, it
summarizes the explanation generation performance and enables an automatic selection of the
best performing methods regarding the functional measurement of continuity [7] with our two
proposed formulas for stability and robustness.

6.2. Handwritten Digit Classification

The explanation robustness and stability results of the handwritten digit classification task with
Grad-CAM and OS explanations are shown in Table 1 and 2, respectively. As expected, the Grad-
CAM explainer shows an increasing explanation robustness with decreasing perturbation for



Explainer MSE Cosine SSIM
𝑆𝑁𝑅 100 101 102 100 101 102 100 101 102

Grad-CAM 0.33 0.50 0.69 0.82 0.81 0.82 0.50 0.73 0.91
OS 0.46 0.57 0.75 0.82 0.88 0.91 0.42 0.72 0.81

Table 1
Robustness evaluation (𝑠 = 𝑘 = 10) of the MNIST classifier for Grad-CAM and OS explanations using
three distance metrics (MSE, Cosine, SSIM) for different 𝑆𝑁𝑅.

Explainer MSE Cosine SSIM
CVI ARI AMI V ARI AMI V ARI AMI V

Grad-CAM 0.98 0.95 0.95 0.03 0.03 0.09 0.0 0.0 0.07
OS 0.99 0.98 0.99 0.99 0.98 0.98 0.01 0.01 0.09

Table 2
Stability evaluation of the MNIST classifier for Grad-CAM and OS explanations using three distance
matrices (MSE, Cosine, SSIM) and hierarchical clustering for 𝑘 = 2, … , 20.

the MSE and SSIM. However, the robustness of the cosine similarity is constant for the different
perturbation levels. The overall performance varies across the distance metrics with the best
robustness value 0.91 for 𝑆𝑁𝑅 = 102 and SSIM. The other two distance metrics yield smaller
values highest 𝑆𝑁𝑅 level. We see a similar increasing trend for the OS explainer throughout the
𝑆𝑁𝑅 scaling. In contrast to the Grad-CAM, the cosine-based value is the best performing. The
values are comparable to those of the Grad-CAM approach revealing only slight differences.

We applied PCA dimensionality reduction to the embeddings of the input images from 𝐷.
The resulting plot showed two clearly separable classes perfectly matching the ground-truth
labels whereas the explanation clusterings differ in their performance regarding the baseline
clustering. The stability results in Table 2 are in contrast to the robustness evaluation. The
MSE-based clusterings indicate very stable explanations throughout all three CVIs and both
explainers. For the Grad-CAM explainer, we see basically non-existent robustness near 0 with
the cosine similarity and SSIM. This means only random cluster assignments of the explanations
in comparison to the input image clusterings. The same happens for the OS explanations under
the SSIM distance matrix, which seems to be not applicable for this approach. Still, the OS
explainer has also almost perfect stability when applying the cosine similarity on the heatmaps.
These results show a sensitivity towards distance metric selection, which must be performed
with care to yield meaningful clusterings or otherwise random assignments.

7. Discussion

Despite the straightforward computation of stability and robustness, there are some aspects
that need to be considered and investigated in future research. The first aspect is the choice of
explanation distance metrics 𝑑(𝐸𝑀(𝑥), 𝐸𝑀(𝑦)) that determine the clustering used for the stability
assessment as well as the robustness relying on these distances. For example, the experiments
show that clusterings of Anchor explanations using the Jaccard distance on tabular classification



or the SSIM and OS explainer on visual classification are not similar to any of the clusterings of
𝐷 itself and the generated explanations are quite unstable. Hence, it is crucial to carefully select
an appropriate distance metric and clustering algorithm that capture the relationship between
explanations such that it can produce meaningful groups and an adequate interpretation.

For both measures other factors need consideration when interpreting the results. As the
parameters 𝑠 and 𝑘 (robustness) seem to not influence the results too much (if at least some
randomness is introduced), the sampling algorithm might have more impact. In fact, there
might be different results when applying various perturbations, e.g., image scaling, shifting, and
rotation, or more sophisticated sampling. In future experiments, it could be checked if these
actually provide more options to assess explanation robustness against manifold perturbations.

Another issue is the comparability of stability and robustness across different classifiers
trained on the same data, the same classifier trained on similar datasets in the same scenario,
or even both. Moreover, the relation to a specific explainer or explanation generation method
has to be kept in mind as our experiments have shown for different methods. To preserve this
variability, the proposed definitions of the stability and robustness characteristic are generic
and allow for using different distance metrics or clustering algorithms. Therefore, there might
be more suitable choices of explainers and parameters according to the model or dataset. If
applicable, fixation of the dataset, classification model, clustering algorithm, and explanation
distance metric at least provides facts about the stability and robustness of the explanations
from similar explainers, e.g., multiple feature importance or heatmap explainers. This helps
identifying the most useful explanations for the current scenario.

This flexibility of the stability definition also induces challenges towards the interpretability
of the quantification of the clustering similarity. Romano et al. [29] recommend the usage of
ARI for the case of big equal sized clusters in the reference clustering (here: 𝐶𝐷𝑖 ) and AMI for
an unbalanced clustering and small clusters. Furthermore, the impact of the choice of a random
model for the adjustment of the clustering similarity measure and the comparison against a
reference clustering or between two derived clusterings should be considered [30].

8. Conclusion

To make AI an acceptable tool in Business Intelligence and Analytics in particular – or in
decision support tools in general – AI tools and frameworks have to achieve high levels of
reliability, transparency and trust. These form the basis for AI accountability, especially in
critical business applications (like healthcare). XAI methods provide explanations of how
AI models arrive at specific conclusions, making it easier for business analysts and decision-
makers to understand and trust these outputs – reducing the likelihood of misinterpretation and
hopefully leading to more informed and effective business decisions. Quantifying the outcome
of XAI methods is hence a paramount precondition to turn AI decisions into reliable business
decisions. Our approach yields two general-purpose metrics to quantify stability and robustness
of explanations. In future research, the applicability of various other explanation generation
methods and corresponding distance metrics can be tested. The expansion to multiple other
scenarios and classification tasks will show the generalizability of the explainability approach
in different fields.



References

[1] A. Adadi, M. Berrada, Peeking inside the Black-Box: A Survey on Explainable Artificial
Intelligence, IEEE Access 6 (2018) 52138–52160.

[2] M. T. Dzindolet, S. A. Peterson, R. A. Pomranky, L. G. Pierce, H. P. Beck, The role of trust in
automation reliance, International journal of human-computer studies 58 (2003) 697–718.

[3] G. Vilone, L. Longo, Notions of explainability and evaluation approaches for explainable
artificial intelligence, Information Fusion 76 (2021) 89–106.

[4] M. Mitchell, S. Wu, A. Zaldivar, P. Barnes, L. Vasserman, B. Hutchinson, E. Spitzer, I. D.
Raji, T. Gebru, Model cards for model reporting, in: Proceedings of the conference on
fairness, accountability, and transparency, 2019, pp. 220–229.

[5] T. Gebru, J. Morgenstern, B. Vecchione, J. W. Vaughan, H. Wallach, H. D. Iii, K. Crawford,
Datasheets for datasets, Communications of the ACM 64 (2021) 86–92.

[6] C. Seifert, S. Scherzinger, L. Wiese, Towards generating consumer labels for machine
learning models, in: 2019 IEEE First International Conference on Cognitive Machine
Intelligence (CogMI), IEEE, 2019, pp. 173–179.

[7] M. Nauta, J. Trienes, S. Pathak, E. Nguyen, M. Peters, Y. Schmitt, J. Schlötterer,
M. Van Keulen, C. Seifert, From anecdotal evidence to quantitative evaluation meth-
ods: A systematic review on evaluating explainable ai, ACM Computing Surveys 55 (2023)
1–42.

[8] K. S. Chmielinski, S. Newman, M. Taylor, J. Joseph, K. Thomas, J. Yurkofsky, Y. C. Qiu,
The dataset nutrition label (2nd gen): Leveraging context to mitigate harms in artificial
intelligence, arXiv preprint arXiv:2201.03954 (2022).

[9] W. Liang, N. Rajani, X. Yang, E. Ozoani, E. Wu, Y. Chen, D. S. Smith, J. Zou, What’s docu-
mented in ai? systematic analysis of 32k ai model cards, arXiv preprint arXiv:2402.05160
(2024).

[10] A. Boggust, H. Suresh, H. Strobelt, J. Guttag, A. Satyanarayan, Saliency cards: A frame-
work to characterize and compare saliency methods, in: Proceedings of the 2023 ACM
Conference on Fairness, Accountability, and Transparency, 2023, pp. 285–296.

[11] J. Tagliabue, V. Tuulos, C. Greco, V. Dave, Dag card is the new model card, arXiv preprint
arXiv:2110.13601 (2021).

[12] J. Schäfer, L. Wiese, ASDF-Dashboard: Automated Subgroup Detection and Fairness
Analysis, in: Proceedings of the LWDA 2022 Workshops: FGWM, FGKD, and FGDB,
Hildesheim (Germany), Oktober 5-7th, 2022, volume 3341 of CEUR Workshop Proceedings,
2022, pp. 45–56.

[13] S. Liu, X. Wang, M. Liu, J. Zhu, Towards better analysis of machine learning models: A
visual analytics perspective, Visual Informatics 1 (2017) 48–56.

[14] D. Alvarez-Melis, T. S. Jaakkola, On the Robustness of Interpretability Methods, arXiv
preprint arXiv:1806.08049 (2018).

[15] D. Alvarez-Melis, T. Jaakkola, Towards Robust Interpretability with Self-Explaining Neural
Networks, in: Proceedings of the 32nd Conference on Neural Information Processing
Systems (NeurIPS 2018). Montréal, Canada, volume 216, 2018.

[16] S. M. Lundberg, S.-I. Lee, A Unified Approach to Interpreting Model Predictions, in:
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett



(Eds.), Advances in Neural Information Processing Systems 30, Curran Associates, Inc.,
2017, pp. 4765–4774.

[17] M. T. Ribeiro, S. Singh, C. Guestrin, ”Why Should I Trust You?”: Explaining the Predictions
of Any Classifier, in: Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016,
2016, pp. 1135–1144.

[18] L. Hubert, P. Arabie, Comparing partitions, Journal of classification 2 (1985) 193–218.
[19] W. Nie, Y. Zhang, A. Patel, A theoretical explanation for perplexing behaviors of

backpropagation-based visualizations, in: International conference on machine learning,
PMLR, 2018, pp. 3809–3818.

[20] A. Johnson, T. Pollard, R. Mark, MIMIC-III Clinical Database (version 1.4), 2016. doi:10.
13026/C2XW26.

[21] S. Purushotham, C. Meng, Z. Che, Y. Liu, Benchmarking deep learning models on large
healthcare datasets, Journal of biomedical informatics 83 (2018) 112–134.

[22] M. Moor, B. Rieck, M. Horn, C. R. Jutzeler, K. Borgwardt, Early prediction of sepsis in the
ICU using machine learning: a systematic review, Frontiers in medicine 8 (2021) 607952.

[23] A. E. W. Johnson, D. J. Stone, L. A. Celi, T. J. Pollard, The MIMIC Code Repository: enabling
reproducibility in critical care research, Journal of the American Medical Informatics
Association 25 (2018) 32–39.

[24] M. Moor, M. Horn, B. Rieck, D. Roqueiro, K. Borgwardt, Early recognition of sepsis
with Gaussian process temporal convolutional networks and dynamic time warping, in:
Machine Learning for Healthcare Conference, PMLR, 2019, pp. 2–26.

[25] A. E. Johnson, J. Aboab, J. D. Raffa, T. J. Pollard, R. O. Deliberato, L. A. Celi, D. J. Stone, A
comparative analysis of sepsis identification methods in an electronic database, Critical
care medicine 46 (2018) 494.

[26] M. T. Ribeiro, S. Singh, C. Guestrin, Anchors: High-PrecisionModel-Agnostic Explanations,
in: Proceedings of the AAAI conference on artificial intelligence, volume 32, 2018.

[27] D. W. Apley, J. Zhu, Visualizing the Effects of Predictor Variables in Black Box Supervised
Learning Models, Journal of the Royal Statistical Society Series B: Statistical Methodology
82 (2020) 1059–1086.

[28] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Batra, Grad-cam: visual
explanations from deep networks via gradient-based localization, International journal of
computer vision 128 (2020) 336–359.

[29] S. Romano, N. X. Vinh, J. Bailey, K. Verspoor, Adjusting for Chance Clustering Comparison
Measures, The Journal of Machine Learning Research 17 (2016) 4635–4666.

[30] A. J. Gates, Y.-Y. Ahn, The Impact of Random Models on Clustering Similarity, arXiv
preprint arXiv:1701.06508 (2017).

http://dx.doi.org/10.13026/C2XW26
http://dx.doi.org/10.13026/C2XW26

	1 Introduction
	2 Related Work
	3 XAI Business Use Cases
	4 Explainability of XAI Methods in Classification Problems
	4.1 Stability of Explanations
	4.2 Robustness of Explanations

	5 Experimental Setup
	5.1 Feature Extraction and Preprocessing
	5.2 Tabular Classification
	5.3 Visual Classification

	6 Results
	6.1 Stroke Mortality Prediction
	6.2 Handwritten Digit Classification

	7 Discussion
	8 Conclusion

