
Privacy-preserving Anonymization of FHIR
healthcare data
Wenhui Yang1, Lena Wiese1,2

1Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Str.1, Hannover, 30625, Germany
2Institute of Computer Science Goethe University Frankfurt, Robert-Mayer-Str.10, Frankfurt am Main, 60325, Germany

Abstract
Healthcare organizations are increasingly using Electronic Health Records (EHRs) to improve patient
care and treatment efficacy. The introduction of the FHIR standard by HL7 aimed to handle varied
and unstructured healthcare data formats using a resource-based approach. However, FHIR datasets
contain Personally Identifiable Information (PII), posing privacy challenges under regulations like
GDPR and HIPAA. This paper proposes a 𝑘(𝑛,𝑡)-anonymity privacy model for FHIR datasets, utilizing
a multidimensional anonymization method to safeguard patient privacy and maintain data structure
integrity. This approach prevents the re-identification of individual records while handling FHIR’s
complex data structure.
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1. Introduction

In recent years, healthcare organizations have increasingly relied on Electronic Health Records
(EHRs) to collect patients’ health data, aiming to enhance patient care, improve treatment
efficacy, and ensure more accurate diagnoses [1]. To address the challenges of handling varied
or unstructured data formats, the Health Level Seven International (HL7) healthcare standards
organization introduced the Fast Healthcare Interoperability Resources (FHIR) standard in 2011.
FHIR 1 uses a resource-based approach to data modeling, where every piece of medical data
is defined as a resource. The standard defines numerous resources to represent real-world
concepts in the healthcare system, such as Patient and Practitioner, as well as elements related
to the healthcare process.

However, the presence of Personally Identifiable Information (PII) within FHIR poses signif-
icant challenges to data sharing due to data protection regulations. Numerous international
and national laws and regulations, including the General Data Protection Regulation (GDPR) in
Europe [2][3] and the Health Insurance Portability and Accountability Act (HIPAA) in the USA
[4][5], require the anonymization or removal of personal or sensitive identifying information
before any knowledge extraction tasks or queries are performed. Simply removing personal
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identifiers does not adequately address privacy concerns, as quasi-identifiers can indirectly
reference patients and cannot be removed due to their essential role. Additionally, removing
identifiers can disrupt the data integrity due to the unique structure of FHIR datasets, where
resources often reference each other using identifiers.

Several studies have proposed and analyzedmethods for the anonymization and pseudonymiza-
tion of FHIR resources [6][7][8]. [9] proposed a framework for anonymizing and standardizing
FHIR datasets. This framework analyzes each attribute within the extracted data and applies
rule-based methods to associate attributes with appropriate anonymization techniques. The
framework in [10] uses a configuration file created by data experts to process FHIR data. It
utilizes FHIRPath to locate specific elements and performs anonymization operations such as
deletion, hashing, and substitution. While effective in practice, these methods have limitations.
They focus solely on the Patient resource, addressing exposure issues related to its specific at-
tributes. However, other FHIR resources should not be overlooked, as cross-references between
resources can also compromise patient privacy.

In disease transmission networks or epidemiological graphs, health data is often presented in
a graph-based format, similar to FHIR datasets. Various graph-based anonymization methods
have been developed, including classic privacy models like 𝑘-degree [11], 𝑘-Automorphism [12],
and 𝑘-Isomorphism [13]. [14] proposed 𝑠𝐿-anonymity, which uses the Szemerédi regularity
lemma to enforce 𝑘-anonymity by randomizing edges within sets of nodes to make them
structurally indistinguishable. [15] introduced a method (𝑘, 𝑙)-anonymity ensuring that even
if an attacker knows up to 𝑙 neighbors of a node, they cannot identify that node within a
group of fewer than 𝑘 nodes, by initially adding and then removing redundant edges. These
models use graph structure and attribute information to prevent structural and node attribute
disclosure attacks. Typically, nodes represent patients, and edges represent interactions between
patients. However, this approach is unsuitable for FHIR datasets, where each node originates
from different resources with distinct attribute structures, making it infeasible to directly apply
general graph anonymization to FHIR data.
In this paper, we propose a privacy model 𝑘(𝑛,𝑡)-anonymity suitable for FHIR datasets and

employ a multidimensional anonymization method to protect patient privacy in published
datasets.

2. Problem Definition

2.1. Data Model

The FHIR standard includes more than a hundred different resources, making it impractical to
detail each one. In our study, we abstract and discuss five key resources: Patient, Encounter,
Observation, DiagnosticReport, and MedicationAdministration. Based on their inter-referential
structures and inherent attributes, we can extract the graph structure as depicted in Figure 1.
In this graph, circles represent the nodes, which are the resources in the FHIR dataset, while
squares represent the attributes carried by each node. Here, we simplify the attributes to include
only QIs (quasi-identifiers) and SAs (sensitive attributes) as the labels of the nodes.
Let 𝐺 represent the entire collection of graphs, including the records of multiple patients.

𝐺𝑖 = (𝑉 (𝐺𝑖), 𝐸(𝐺𝑖)) denotes the graph of patient 𝑖, which is their individual record. In our



Figure 1: The data model extracted from the FHIR standard (using five types of resources as examples)

example, the nodes can be classified into five categories: P, E, O, M, and D, representing different
types of resources. Each vertex 𝑣 ∈ 𝑉 (𝐺𝑖) is represented by a tuple of labels, denoted as
𝑣 = (𝑙1, 𝑙2, … , 𝑙𝑘), where 𝑙𝑖 is the value of the 𝑖-th label. For a given node type 𝑇, the possible
variants are denoted as {𝑣𝑇1 , 𝑣𝑇2 , … , 𝑣𝑇𝑝}, where 𝑣𝑇𝑖 represents different variants of node type 𝑇.

2.2. Attack Model

We consider that the attacker possesses partial knowledge about an individual, specifically
knowing some information present in their records. The attacker aims to use this partial
knowledge to identify the complete record in 𝐺. They can use background knowledge of label
values and structural relationships to filter records. If few matching records are found, there is a
risk of privacy breach. We assume that the attacker knows 𝑛 labels, which are distributed among
different types of nodes, denoted as 𝐿𝑘𝑛𝑜𝑤𝑛 = {𝑙1, 𝑙2, … , 𝑙𝑛}. Based on the known label values
𝐿𝑘𝑛𝑜𝑤𝑛 the attacker can infer the corresponding node types 𝑇𝑘𝑛𝑜𝑤𝑛 and their possible variants.
The attacker then incrementally filters the graphs in the collection to find those containing
these node variants, ultimately obtaining the candidate graph set 𝐺𝑚𝑎𝑡𝑐ℎ𝑒𝑑. This process can be
mathematically represented as follows:

• For each node type 𝑇 ∈ 𝑇𝑘𝑛𝑜𝑤𝑛 and its set of inferred variants {𝑣𝑇1 , 𝑣𝑇2 , … , 𝑣𝑇𝑝}:
𝐺𝑇 = {𝐺𝑗 ∈ 𝐺 | ∃𝑣 ∈ 𝑉 (𝐺𝑗), 𝑣 ∈ {𝑣𝑇1 , 𝑣𝑇2 , … , 𝑣𝑇𝑝}}

• 𝐺𝑚𝑎𝑡𝑐ℎ𝑒𝑑 = ⋂𝑇∈𝑇𝑘𝑛𝑜𝑤𝑛 𝐺𝑇

3. Privacy Guarantee

𝑘𝑚-anonymity [16] extends 𝑘-anonymity [17] to scenarios where attackers may have knowledge
of up to 𝑚 elements of a record. It guarantees that even if an attacker knows up to 𝑚 attributes
(elements) of a record, will not be able to identify less than 𝑘 records in the published data. We
propose a new privacy guarantee 𝑘(𝑛,𝑡)-anonymity which extends 𝑘𝑚-anonymity guarantee to
handle graph datasets with different types of nodes. This ensures the protection of individual



identities associated with graph records from attackers with the aforementioned capabilities.
We define 𝑘(𝑛,𝑡)-anonymity as:

Definition 1. A graph database 𝐺 is considered 𝑘(𝑛,𝑡)-anonymous if any attacker who has back-
ground knowledge of 𝑛 labels and their distribution across 𝑡 different types of nodes, is not able to
use this knowledge to identify less than 𝑘 records in 𝐺.

In contrast to 𝑘-anonymity, which assumes that the set of QI is known, our assumption allows
any node or any combination of nodes to be used by the attacker as QIs. This is due to the
presence of holistic references to resources in the FHIR dataset, meaning that a node itself
can serve as the QI for other nodes. Here we introduce a method to transform the original
graph dataset 𝐺 into a graph dataset 𝐺′ that satisfies 𝑘(𝑛,𝑡)-anonymity through multidimensional
generalization.

Input Given a threshold 𝑘 and 𝑛 labels, denoted as 𝐿𝑘𝑛𝑜𝑤𝑛 = {𝑙1, 𝑙2, … , 𝑙𝑛}, which belong to 𝑡
different types. Each type’s labels can be used to infer the variants of that type. This can be
represented as follows:

Let 𝑇𝑖 represent the 𝑖-th type, where 𝑖 = 1, 2, … , 𝑡. Let 𝐿𝑖 denote the set of labels in type 𝑇𝑖. It
can be defined as:

𝐿𝑖 = {𝑙𝑖1, 𝑙𝑖2, … , 𝑙𝑖|𝐿𝑖|}

where 𝑙𝑖𝑗 represents the 𝑗-th label in the 𝑖-th type, and |𝐿𝑖| is the number of labels in type 𝑇𝑖.
Then 𝐿𝑘𝑛𝑜𝑤𝑛 = 𝐿1 ∪ 𝐿2 ∪ ⋯ ∪ 𝐿𝑡. Furthermore, each type 𝑇𝑖 can have a set of variants 𝑉𝑖 inferred
from its labels:

𝑉𝑖 = {𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑖𝑚𝑖}

where 𝑣𝑖𝑗 represents the 𝑗-th variant of type 𝑇𝑖, and 𝑚𝑖 is the number of variants for type 𝑇𝑖.

Node Anonymization As previously mentioned, a node can be represented by a tuple of
its labels, meaning that a type of node can be understood as a relational data table. The first
step is to ensure that each known individual type within the dataset achieves 𝑘-anonymity.
There are many algorithms for achieving 𝑘-anonymity in relational data tables, and here we use
the well-known Incognito algorithm [18], which can find minimal full-domain generalizations.
Therefore, for each type node in 𝑇𝑘𝑛𝑜𝑤𝑛, we apply Incognito for initial anonymization.

Combinations Anonymization After applying the Incognito algorithm to each type of node,
we obtain a set of generalization rules for the labels within each type. These generalization
rules correspond to the different variants of each type. We then construct a frequency tree to
represent the frequency of these variant combinations in the graph dataset. The structure is
illustrated in Figure 2.

We randomly start with type 𝑇1 among the known types, traverse all the graph records in 𝐺 ,
and determine the frequency of each variant. Next, we move to the variants in Type 𝑇2 and find



Figure 2: The frequency tree of variants and their combinations in the Graph dataset after initial
anonymization

the frequency of their combinations, specifically the frequency of graphs that simultaneously
has both 𝑇1 variants and 𝑇2 variants. This process continues in this manner until reaching 𝑇𝑡.
Thus, this frequency tree can track graph records containing all points along the same path.
Additionally, we maintain a list 𝐼 to track the changes in frequency during the merging process
of variants. Initially, 𝐼 stores each individual variant in ascending order of their frequency of
occurrence in the graph dataset. When two variants are merged, the resulting merged variant
replaces the two original variants in 𝐼.

The anonymization process starts at the 𝑇𝑡 level. We examine the frequency of all vertices at
this level; if the frequency is greater than 𝑘 , it indicates that the combination on that path meets
the anonymization requirements. For vertices with a frequency less than 𝑘, similar variants
need to be merged to increase the frequency. At this point, we query list 𝐼 to identify the variant
with the smallest frequency on that path. We believe that this variant affects the frequency of
the combination on that path. Thus, we merge this variant with the next smallest variant of the
same type. Merging means that the generalization levels of their labels will take the union. By
merging variants of the same type in this manner, the frequency of the combination on each
path will eventually exceed 𝑘 , thus meeting the anonymization requirements.

4. Summary

This paper discusses the anonymization of FHIR datasets to protect individual records from
re-identification. We first model the inherent data structure of the FHIR dataset, and then
introduce a novel privacy model 𝑘(𝑛,𝑡)-anonymity, which aims to enhance the protection of
individual records by considering the number of labels 𝑛 and different types of resources 𝑡. To
meet the privacy requirements specified by the 𝑘(𝑛,𝑡) model, we propose a multidimensional
anonymization method, providing a practical and effective solution for FHIR dataset anonymiza-
tion. However, it also has some potential limitations, such as the need to consider data utility
during the combinations anonymization process. Future work plans to evaluate the practicality
and impact of this approach.
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