
Polypheny Prism: Lessons Learned from Crafting a
Versatile Multimodel, Multilingual Query Interface
Martin Vahlensieck1,†, Tobias Hafner1,†, Heiko Schuldt1 and Marco Vogt1

1Databases and Information Systems Group, University of Basel, Switzerland

Abstract
Query interfaces are essential components of Database Management Systems (DBMS), enabling efficient
data retrieval and manipulation. The diversification of DBMSs, driven by the increasing volume and
complexity of data, has led to data silos with incompatible data models and query languages. Polystores
and PolyDBMSs address this issue by providing a unified interface for accessing and integrating data
across heterogeneous systems. This paper introduces Prism, a conceptual model and implementation of a
multimodel, multilingual query interface protocol. Prism facilitates the use of multiple query languages
and data models within a single protocol, simplifying data integration and application development.

Keywords
Query Interface, Multimodel, Polystore, Polypheny

1. Introduction

Query Interfaces are an essential part of Database Management Systems (DBMS). In combination
with bindings for different programming languages and environments, known as drivers, Query
Interfaces enable efficient retrieval and manipulation of data maintained by the DBMS.

The growing volume and complexity of data have given rise to diverse new types of database
management systems, based on different data models and requiring different query languages [1].
Optimized for specific kinds of workloads, these DBMSs are well suited for certain type of
applications. This has led to a fragmentation of the data storage landscape, creating silos of
data incompatible in how they represent data and which query languages they support [2].

Polystores [3], and in particular PolyDBMS [4], try to counteract this fragmentation by
enabling access to data distributed across heterogeneous DBMSs through a single interface.
This allows data from different silos to be combined (e.g., joined) in one query. Furthermore,
these systems drastically simplify application development since all the data can be accessed
using one query language and connection.

However, certain data models are better suited for specific applications and environments
than others. Therefore, since each data model brings its own query language(s), these languages

LWDA’24: Lernen, Wissen, Daten, Analysen. September 23–25, 2024, Würzburg, Germany
Envelope-Open martin.vahlensieck@unibas.ch (M. Vahlensieck); t.hafner@stud.unibas.ch (T. Hafner); heiko.schuldt@unibas.ch
(H. Schuldt); marco.vogt@unibas.ch (M. Vogt)
Orcid 0000-0001-9865-6371 (H. Schuldt); 0000-0002-2674-2219 (M. Vogt)

†
These authors contributed equally.

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:martin.vahlensieck@unibas.ch
mailto:t.hafner@stud.unibas.ch
mailto:heiko.schuldt@unibas.ch
mailto:marco.vogt@unibas.ch
https://orcid.org/0000-0001-9865-6371
https://orcid.org/0000-0002-2674-2219
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


are better suited for these applications [2]. PolyDBMSs therefore support multiple data models
and query languages.

Systems like the PolyDBMS Polypheny [5, 6] require a query interface that supports both
multiple data models and multiple query languages. Yet, to the best of our knowledge, there is
no conceptual model, reference implementation or framework for such a query interface.

The contribution of this paper is to introduce the conceptual model and describe the imple-
mentation of a Query Interface Protocol for multimodel, multilingual systems, named Prism.
The name has been chosen since it, like a prism that refracts light into multiple colors, supports
multiple query languages and data models in one single protocol.

The remainder of this paper is structured as follows: Section 2 outlines the requirements for
such a query interface protocol and discusses related approaches. In Section 3 we introduce the
conceptual model of the protocol, the implementation of which is then introduced in Section 4.
The results of the benchmarking are introduced in Section 5. Section 6 concludes the paper and
gives an outlook on future work.

2. State of the Art

To fully take advantage of the multimodel, multilanguage capabilities of systems such as
Polypheny, we need a sophisticated query interface that allows queries to be submitted using
various query languages. Queries should not be mistaken as simple strings, as features like
prepared statements necessitate proper handling of parameters. Moreover, the interface must
support batching of DML operations to enhance efficiency and performance. Additionally, the
query interface and the underlying protocol must be capable of handling multiple data models.

Implementing a single query interface and protocol, instead of multiple interfaces, is crucial
for several reasons: First, transaction management is a fundamental aspect of the query interface,
deeply integrated with standards like JDBC. A unified interface ensures effective and seamless
transaction control across various languages and datamodels, whichwould be complex and error-
prone with multiple interfaces (cf. polyglot persistence). Additionally, it ensures consistent
behavior and compatibility across different query languages and data models, simplifying
development and maintenance.

Current industry standards like JDBC [7] have set the precedent for relational database
interactions. JDBC provides a well-defined and widely adopted API for Java applications to
interact with relational databases. It includes support for transaction management, prepared
statements, and batched operations. Ensuring compatibility with such standards is critical,
as it allows existing applications to interface seamlessly with new systems without extensive
modifications. The protocol therefore needs to support building drivers compatible with these
industry standard APIs.

However, beyond relational databases, there are no clearly defined standards for interacting
with non-relational databases similar to JDBC or Python’s DB-API. This absence highlights
the necessity of developing a versatile query interface and protocol that can unify interactions
across different data models and query languages.

ArangoDB [8] is a multimodel DBMS, supporting document, graph, and key-value data
models. It uses its proprietary ArangoDB Query Language (AQL), designed for both document



and graph data models. Integration options include a RESTful API, the Arango Shell, a Web
UI, and drivers for various programming languages such as Python, Java, and Go. These
drivers offer methods for operations like data insertion, database creation, and edge addition,
using objects with getters and setters for serialized data, which is serialized using VelocyPack,
ArangoDB’s proprietary binary JSON format. Despite that, ArangoDB does not provide a
multimodel multilanguage query interface.

OrientDB [9], another multimodel DBMS, supports the document, graph, object-oriented,
and key-value data models. It employs an SQL-like query language and Gremlin for graph
queries. OrientDB provides drivers for various programming languages that communicate via a
proprietary binary protocol. Similar to ArangoDB, OrientDB’s approach requires users to adapt
to proprietary query languages, complicating integration and usage across different data models.
This design necessitates significant effort to maintain and extend the proprietary languages,
reducing overall flexibility and efficiency. Consequently, OrientDB also lacks a true multimodel
multilanguage query interface.

Apache Calcite Avatica [10] is a framework for developing drivers compatible with the JDBC
standard. It serves as an abstraction layer for client-server communication for SQL-based
relational systems. Avatica provides common structures for JDBC drivers, eliminating the need
to develop these components from scratch. Avatica consists of a universal JDBC client, which is
database-independent, utilizing Avatica’s own communication mechanisms and protocols. The
driver is adapted to the respective database system by implementing interface methods on the
server side. These methods are called from the server-side Avatica communication endpoint.
Parameters and return values use Avatica-specific representations of internal database concepts.
The implemented interface contains methods to map fromAvatica structures to internal database
concepts and vice versa [10]. However, Avatica is primarily designed for relational systems
and does not natively support the integration of non-relational data models. This limitation is
evident in Polypheny’s current query interface, which, being based on Avatica, is restricted to
relational queries.

In summary, while systems like ArangoDB and OrientDB offer support for multiple data
models, their reliance on a single proprietary query language introduces complexity and reduces
flexibility. On the other hand, frameworks like Apache Calcite Avatica provide robust solutions
for relational databases but lack native support for multimodel environments. This highlights
the pressing need for a versatile query interface and protocol that can seamlessly integrate
multiple data models and query languages, ensuring compatibility with existing standards and
simplifying the development and maintenance process.

3. Conceptual Model

The proposed conceptual model defines a query interface for a DBMS that supports multiple
data models and query languages. The protocol is based on sessions which the client (e.g., an
application) establishes with the server (the DBMS). Within these sessions, the client manages
transactions and executes queries using requests to which the server returns responses. Queries
return data in so-called result sets, which can be of different types. The data values both in the
results and the requests are serialized as Prism Values.



Table 1
Basic request and response types.

Request type Response type

ConnectionRequest ConnectionResponse
PrepareStatement Statement
ExecuteStatement, Fetch Frame
Commit, Rollback, Close, CloseResultSet, CloseStatement Success

3.1. Sessions

A session is an abstraction for the connection between the client and the server. It is not to be
confused with a transaction. An arbitrary number of transactions can take place within a single
session; however, there may only be one transaction at a time. More details on the protocols
handling of transactions are provided in Section 3.5.

After establishing a session, the client sends requests. The server responds to each request
with one or more responses. Each request has an id that is unique within the session. Each
response includes the id of the request and a flag whether it is the last response for that request.
The session ensures multiple responses are delivered in the order they are returned. We write
request and response types with small capitals, so a request of type commit would be Commit.

Sessions can be closed with a Close request or externally (e.g., by a timeout in the underlying
transport protocol).

3.2. Request and Response Types

Each request type has a fixed response type. We list basic request types and their responses in
Table 1. The implementation may define additional request and response types.

An Error response is used to report failures. This response type is special because it can be
returned to any request and is always the last response for that request. Errors do not close
sessions. The error response may contain relevant diagnostic information.

Some requests listed in Table 1 only define a Success response. These requests can fail, but
in those cases the Error response is returned.

The very first request in a session is always of type ConnectionRequest. It contains creden-
tials used for authentication and the client version. The server returns a ConnectionResponse
with the server version number and a flag that is set when both versions are compatible.

3.3. Statement Handling

To execute queries, so-called statements are used. A statement is created or prepared by sending
the query to the server. The server then compiles the query and returns a statement handle, that
can be used to refer to that query. The statement handle can be then used to execute the query
once or multiple times. When executed, the statement produces zero or more result tuples.
Multiple result tuples are then chunked together into result sets which are sent to the client.

Queries can also have placeholders. Placeholders are filled with values when executing the
statement. Placeholders can be of two types: Positional and named. Each positional placeholder



Figure 1: Overview of the requests and the corresponding responses.

has an index, which matches the position it appears in the query. Named parameters get their
names from the specification in the query. Which parameter types (if any) are supported,
and how parameters are specified, is defined by the query language. Positional and named
parameters may not be mixed within a query.

The client prepares a query using the PrepareStatement request, which contains the query
and a string indicating the query language. The server compiles the query and returns a
Statement response. This response contains a statement handle, which can be used to refer to
the statement within the same session until it is closed.

The prepared statement is then executed by sending an ExecuteStatement request with
three fields: statement handle, options and parameters. Options are used to send information
related to the query, such as a priority or freshness requirement. Parameters is used to specify
values for the placeholders present in the query. The format of parameters depends on the
placeholders used: For positional placeholders, parameters is an array with the same number of
elements as number of placeholders. The placeholder with index 𝑖 is then filled by the array
element at index 𝑖. For named placeholder, parameters specify for each name the value with
which it should be filled. ExecuteStatement returns a Frame containing the first result set
and a flag if more result sets are available. Further Frames with result sets are fetched with
Fetch requests that contain the statement handle.

ExecuteStatement can also take a batch of parameters. The query is then executed once
for each item in the batch.

For queries with no placeholders, there is also a PrepareAndExecute request that prepares
the query and then immediately executes it. This request returns two StatementResponses.
The first contains the statement handle and is sent after compiling the query, the second contains
the first result set after execution. Subsequent result sets are fetched like for ExecuteStatement.

There are two request types to free resources, which contain only the statement handle. The
first type, CloseResultSet is used by the client to indicate that the execution can be stopped



Figure 2: Overview of the possible result sets.

and no more result sets will be fetched (it can be seen as the counterpart to ExecuteStatement).
The second type CloseStatement closes the statement and the server can free the associated
resources. The statement handle must no longer be used. It can be seen as the counterpart to
the PrepareStatement request. Closing a session also closes all statements and result sets.

3.4. Result Set Types

We consider four types of result sets: scalar, relational, document and labeled property graph.
Scalar results are simply an integer number. Scalar results are common for DML queries, e.g.,
the number of affected rows in an update.

Relational result sets consist of two parts: metadata and rows. Let 𝑛 be the number of columns
in the relational result and 𝑚 the number of tuples returned. The metadata consists of elements
𝑐1, ..., 𝑐𝑛 where 𝑐𝑖 describes column 𝑖. This metadata is relational information such as column
name, type, nullability etc. Rows is a list of 𝑚 tuples 𝑟1, ..., 𝑟𝑚. Each tuple consists of 𝑣1, ..., 𝑣𝑛
prism values where 𝑣𝑖 is the value in column 𝑖.

Document result sets are a list of zero or more documents. Each document consists of an
arbitrary number of key-value pairs. Values may contain again documents, i.e., they can be
nested.

Graph result sets consist of nodes and edges. Nodes and edges can have labels and properties.
Labels are strings like “PERSON” or “KNOWS”. Properties are key-value pairs. Values cannot
contain properties, i.e., they cannot be nested. A node is represented as a tuple of the form
(𝑖𝑑, 𝑙𝑎𝑏𝑒𝑙𝑠, 𝑝𝑟𝑜𝑝𝑒𝑟 𝑡𝑖𝑒𝑠). 𝑖𝑑 is a unique value identifying the node. Edges are tuples of the form
(𝑠𝑜𝑢𝑟𝑐𝑒_𝑖𝑑, 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛_𝑖𝑑, 𝑙𝑎𝑏𝑒𝑙𝑠, 𝑝𝑟𝑜𝑝𝑒𝑟 𝑡𝑖𝑒𝑠). Both 𝑠𝑜𝑢𝑟𝑐𝑒_𝑖𝑑 and 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛_𝑖𝑑 refer to the id value
of nodes.

Against intuition, the result type model is not solely defined by the query language, but also
by the query itself. Examples include SQL and Cypher: A DML SQL query will produce a scalar
result, while a DQL SQL query produces a relational result. Cypher queries can produce scalar,
relational or graph results. It is therefore advisable that the client is prepared to handle results
of all types, independent of which language is selected.



Figure 3: Basic building blocks of the implementation of Prism in Polypheny and our JDBC driver
featuring the multimodel extensions.

3.5. Transaction Handling

Transactions are opened implicitly by preparing statements. Transactions can be committed
with a Commit request and rolled back with a Rollback request. When the session is closed
(either by a Close request or externally) the current transaction is rolled back. However,
transactions are not only terminated by the client. The DBMS may commit some transactions
automatically when certain queries are executed (such as DDLs) or rollback transactions due to
deadlocks or other issues. The client must therefore be able to deal with changes to the state of
the transaction.

3.6. Prism Values

Prism Values consists of two classes: Primitive values and complex values. Primitive values
are integers, floating-point numbers, strings, bytes, day, time, timestamp, time interval and
null. Complex values consist of other prism values. There are two complex values: lists and
documents. Lists are a sequence of zero or more Prism values. Documents are key-value pairs,
where both key and value can be Prism values.



4. Implementation

We have implemented the protocol introduced in Section 3 in the PolyDBMS Polypheny. Our
implementation includes the query interface (server) in Polypheny and various drivers for
different programming languages. In this section, we give an overview of the parts related to
client-server communication, including serialization and message transport. Furthermore, we
provide some insights and discuss some lessons learned from implementing drivers for our
query interface in Java and Python.

4.1. Client-Server Communication

To communicate between client and server, we need to serialize messages and their content and
transmit them over a transport protocol.

For serialization, we chose Google Protocol Buffers (Protobuf) [11]. Protobuf is based on
definition files that are compiled into language bindings. Definition files contain the specification
of so-called messages, which are (de-)serialized to native objects using the language bindings.
Messages can contain other messages, primitive types (such as int or bytes), lists and unions.

We chose Protobuf because it has bindings to many (10+) programming languages and because
the binary serialization aims to be backwards compatible. The protobuf definition files of our
implementation of the Prism interface are available on GitHub1.

Initially, we used gRPC, a remote procedure call (RPC) library developed by Google, where
the client sends RPCs to the server. However, gRPC is call-based rather than connection-based,
meaning each client must explicitly close the session, or it will remain open indefinitely. To
make sure each session is closed, each client would have to maintain a persistent state (in case
it crashes) that is used in a subsequent invocation to close any open sessions. The other option
is to aggressively use timeouts, which comes with other problems.

To solve this, we decided to (de-)multiplex messages ourselves and send them over so-called
transports. A transport handles the details of how to send messages over another transport
protocol. We have two transports: one based on TCP and one based on UNIX domain sockets.
Transports propagate close events to the session (e.g., a connection reset in TCP). The session is
then considered externally closed and cleans up all resources. This works very well in practice,
the OS kernel closes associated TCP connections when an application exits.

With transports, cleanup of sessions is easier, and it is straightforward to support other
transport protocols. With our initial gRPC-based implementation, we have also observed
fluctuations in the round-trip time of RPCs. With our own implementation, these are no longer
present.

4.2. Driver Implementation

We have implemented drivers for Java, Python, Go and C++. Three of these languages have
a standard on database drivers: JDBC for Java, DB API for Python and db/sql for Go. In this
section, we will focus on our implementations for Java and Python, since they some represent
the two extremes. The JDBC standard [7] is massive compared to the rather minimal DB API

1https://github.com/polypheny/Polypheny-Prism-API

https://github.com/polypheny/Polypheny-Prism-API


standard. Furthermore, Java is a compiled, statically and strictly typed language, while Python
is interpreted and dynamically typed.

When implementing a driver for a programming language or environment, we want to, when
present, implement the standard as closely as possible, while still offering the full capabilities
of our interface without compromise. Since existing standards only cover relation database
interactions, this means finding a proper approach for supporting additional data models while
preserving compatibility.

Both JDBC and the Python DB API were designed for relational SQL DBMSs. Both standards
define classes that need to implement certain methods. We have added additional methods for
multimodel, multilanguage queries to those classes. In Python, these methods can be called
directly (because it is dynamically typed). In Java, the client has to first cast the generic JDBC
Connection object to our implemented subclass, which can be done with a method defined by
the JDBC standard.

Another challenge is how to map Prism values to the type system of the programming
language. A Prism value may not have a native counterpart in a certain programming language.
When no native counterpart exists, we declare a wrapper object ourselves. One example is the
interval type, which consists of two integers: Number of months and number of milliseconds
(because a month cannot be clearly defined in terms of milliseconds). In Python, the values are
converted directly. In Java, they are converted to subclasses of an abstract TypedValue object.
This object defines methods to retrieve the internal value as a Java type.

An additional challenge with implementing compatibility with the JDBC standard were the
calls to retrieve metadata about the database. The JDBC standard defines many methods to
retrieve metadata about database entities, such as tables or functions. To retrieve the information
for each of the methods specified in the standard, we have added specific request types to the
protocol to retrieve that information.

In the future, we would like to implement a more holistic approach for retrieving metadata.
Instead of extending the Prism protocol with specific metadata requests to accommodate every
standard, we plan to take advantage of our versatile interface and design a new query language
with the sole purpose of metadata retrieval. This query language can then be used by all drivers
and can return metadata that is relevant to our system. Since the Prism protocol does not require
a fixed mapping between query language and result type, this metadata retrieval language
will be able to specify metadata using any of the available data models. Compared to general
metadata requests that may require sophisticated processing of the metadata within the driver to
fulfill the specifications of the standard (e.g., regarding the order of the information), a metadata
retrieval language keeps the driver lightweight since the processing is done on the server.

5. Evaluation

We have benchmarked the performance of our implementation of the Prism query protocol in
the Polypheny system. For this, we have compared the performance of the new Prism-based
implementation with both the existing implementation based on the Avatica framework and a
simple JSON endpoint. We compiled a list of database tasks as workload and executed it using
the different interfaces.



Figure 4: Execution times without outlier
across the 25’000 repetitions of the benchmark.

Figure 5: Times required to serialize relational
results of various sizes

Figure 6: Histogram of the execution times
required to insert 1’000 rows into a relation.

For the benchmarks, both Polypheny and the test client were run on the same computer,
equipped with an Intel Core i7-1280P processor and 32GB of RAM. The operating system used
was Ubuntu 20.04.6 LTS, and the Java version deployed was OpenJDK 17.0.8. Each task has
been executed 25’000 times, split into five runs of 5’000 each, using an automated test client.

We made three comparisons: First, we compared the round-trip time of an empty RPC call
between Avatica and Prism to determine the pure overhead (5.1). We then compare the time
to serialize relational result sets between the JSON endpoint and Prism (5.2). At the end, we
compare how long it takes to insert 1’000 rows using each of the three interfaces (5.3).

5.1. RPC Overhead

The first aspect of the Prism implementation that we have benchmarked is the round-trip time
of a single RPC (Remote Procedure Call). This metric is crucial since any significant overhead



in the RPC system directly impacts the overall communication and thus the performance. Both
the Avatica-based and Prism-based interfaces rely on custom RPC implementations rather
than existing open source RPC frameworks. For this benchmark, we measured the time taken
for an RPC call without a payload across 25’000 calls. Figure 4 depicts the measured time
for each test run. One notable observation is the initially high execution time of the Avatica-
based implementation, which only decreases after 10,000 calls, while still displaying significant
inconsistencies, with a standard deviation of 31.4404𝜇𝑠. The Prism interface in contrast is more
consistent (standard deviation of 18.1609𝜇𝑠) with short execution times from the start of the
benchmark. Despite the inconsistencies, execution times are relatively similar, with a mean
of 67.0194𝜇𝑠 for the Prism interface and 65.6982𝜇𝑠 for the Avatica-based implementation. This
benchmark therefore shows that there are no relevant differences in the execution times caused
by the RPC stacks that might skew the validity of the following measurements.

5.2. Value Serialization

Another important parameter is the time required to serialize values, impacting both parameter-
ized statements and query results. To benchmark this, we compared the serialization mechanism
of the Prism interface with a naive JSON-based implementation. We generated relational results
of exponentially increasing sizes, ranging from 1 row to 1’000’000 rows, and measured the time
required to serialize the responses. The results are depicted in Figure 5. Our results indicate
that the Prism serialization is consistently faster than the JSON one. The largest difference is
in the range of 1 row to 100 rows, commonly used as fetch sizes within applications applying
pagination to the data. The plateauing of execution times noticed for small results in both
methods is due to the time required to initialize the serialization frameworks. This overhead is
constant in time complexity and thus becomes negligible with larger results. Despite a warm-up
period being applied to reduce the impact of the JIT compiler, there still is a decrease for the 10
rows test due to the JIT compiler optimizing during the 1 row test, as all tests were executed
sequentially.

5.3. Insert Performance

To highlight the importance of a stateful protocol like the Prism interface or Avatica in contrast
to a state-less approach (for instance a simple JSON endpoint), we have evaluated a scenario
involving the insertion of 1’000 rows using prepared statements. For the Prism and the Avatica
interface, we leveraged their capability of handling prepared statements by first preparing an
insert statement, which was then batch-executed with the values for the 1’000 rows. In contrast,
with the stateless JSON endpoint, each row needs to be inserted using its own individual
statement. The results, depicted in Figure 6, show that a stateful protocol is not only necessary
to provide features like transaction control, but also significantly improves performance due
to the availability of features like batching. This demonstrates the necessity of a well-defined
protocol for query interfaces.



5.4. Discussion

Our evaluation demonstrates that the Prism query protocol and its implementation in the
Polypheny system are performance-wise comparable to the Avatica framework, showing no
significant differences in execution times. Furthermore, we demonstrated the advantages of
a typed and efficient serialization protocol in contrasted to a naive JSON serialization. Such
a naive stateless approach, which is unfortunately quite common in NoSQL systems due to
the lack of well-defined query interface protocols and standards, is not only performance-wise
inferior due to the lack of features like batching, it is also unable to provide support for essential
features of a DBMS like transaction control.

6. Conclusion and Future Work

With Prism, we introduced a conceptual model for a multimodel, multilingual query interface
protocol, which we have successfully implemented within the Polypheny system. Benchmark-
ing results indicate that Prism delivers performance comparable to the established Avatica
framework, with the added advantage of supporting multiple data models and query languages.
This makes Prism not only a valid implementation for Polypheny, but also a conceptual model
and reference for other multimodel and multilanguage database systems.

Currently, we are developing drivers for various programming languages and environments.
Notably, there is a Google Summer of Code project dedicated to implementing a driver for
.NET2.

Future work includes several key areas of development. First, we aim to implement robust
encryption mechanisms to ensure data security and privacy during transmission. Additionally,
we plan to expand the conceptual model and add support for more data models such as time-
series, thereby enabling a wider range of applications and use cases. Another area of focus
is adding the ability for random reads in Binary Large Objects (BLOBs). Finally, we envision
developing transport abstraction layers, which could lead to innovative use cases like sending
Protocol Buffers over web sockets for real-time user interfaces.

Acknowledgments

This work is partly funded by the Swiss National Science Foundation, project Polypheny-DDI
(contract no. 200020_213121 / 1), and Innosuisse, project SwissRenov (contract no. 107.512
FS-EE).

References

[1] M. Stonebraker, U. Çetintemel, “One size fits all”: An idea whose time has come and gone,
in: Proceedings of the 21st International Conference on Data Engineering, IEEE, 2005, pp.
2–11. doi:10/ctkd2n.

2https://summerofcode.withgoogle.com/programs/2024/projects/Z5ZX5ekd

http://dx.doi.org/10/ctkd2n
https://summerofcode.withgoogle.com/programs/2024/projects/Z5ZX5ekd


[2] Q. Guo, C. Zhang, S. Zhang, J. Lu, Multi-model query languages: taming the variety of big
data, Distributed and Parallel Databases 42 (2024-03) 31–71. URL: https://link.springer.
com/10.1007/s10619-023-07433-1. doi:10/gt38bq.

[3] R. Tan, R. Chirkova, V. Gadepally, T. G. Mattson, Enabling query processing across
heterogeneous data models: A survey, in: Proceedings of the 2017 IEEE International
Conference on Big Data, IEEE, 2017, pp. 3211–3220. doi:10/gnr5rf.

[4] M. Vogt, D. Lengweiler, I. Geissmann, N. Hansen, M. Hennemann, C. Mendelin, S. Philipp,
H. Schuldt, Polystore systems and DBMSs: Love marriage or marriage of convenience?, in:
E. K. Rezig, V. Gadepally, T. Mattson, M. Stonebraker, T. Kraska, F. Wang, G. Luo, J. Kong,
A. Dubovitskaya (Eds.), Heterogeneous Data Management, Polystores, and Analytics for
Healthcare – VLDB Workshops, Poly 2021 and DMAH 2021, volume 12921 of Lecture Notes
in Computer Science, Springer International Publishing, 2021, pp. 65–69. doi:10/gn8qvm.

[5] M. Vogt, N. Hansen, J. Schönholz, D. Lengweiler, I. Geissmann, S. Philipp, A. Stiemer,
H. Schuldt, Polypheny-DB: Towards bridging the gap between polystores and HTAP
systems, in: V. Gadepally, T. Mattson, M. Stonebraker, T. Kraska, F. Wang, G. Luo, J. Kong,
A. Dubovitskaya (Eds.), Heterogeneous Data Management, Polystores, and Analytics for
Healthcare – VLDB Workshops, Poly 2020 and DMAH 2020, Lecture Notes in Computer
Science, Springer International Publishing, 2020, pp. 25–36. doi:10/gnxv2h.

[6] M. Vogt, Adaptive Management of Multimodel Data and Heterogeneous Workloads, Ph.D.
thesis, University of Basel, 2022. doi:10/j44k.

[7] L. Andersen, JDBC 4.3 specification, JSR 221, 2017.
[8] ArangoDB, What is arangodb?, 2024. URL: https://www.arangodb.com/docs/stable/index.

html.
[9] D. Ritter, L. Dell’Aquila, A. Lomakin, E. Tagliaferri, OrientDB: A NoSQL, open source

MMDMS, in: Proceedings of the British International Conference on Databases 2021,
London, United Kingdom, March 28, 2022, volume 3163 of CEUR Workshop Proceedings,
CEUR-WS.org, 2021, pp. 10–19.

[10] Apache Software Foundation, Avatica, 2023. URL: https://calcite.apache.org/avatica/docs/.
[11] C. Currier, Protocol buffers, in: C. Hummert, D. Pawlaszczyk (Eds.), Mobile Forensics – The

File Format Handbook, Springer International Publishing, 2022, pp. 223–260. doi:10/m7rq.

https://link.springer.com/10.1007/s10619-023-07433-1
https://link.springer.com/10.1007/s10619-023-07433-1
http://dx.doi.org/10/gt38bq
http://dx.doi.org/10/gnr5rf
http://dx.doi.org/10/gn8qvm
http://dx.doi.org/10/gnxv2h
http://dx.doi.org/10/j44k
https://www.arangodb.com/docs/stable/index.html
https://www.arangodb.com/docs/stable/index.html
https://calcite.apache.org/avatica/docs/
http://dx.doi.org/10/m7rq

	1 Introduction
	2 State of the Art
	3 Conceptual Model
	3.1 Sessions
	3.2 Request and Response Types
	3.3 Statement Handling
	3.4 Result Set Types
	3.5 Transaction Handling
	3.6 Prism Values

	4 Implementation
	4.1 Client-Server Communication
	4.2 Driver Implementation

	5 Evaluation
	5.1 RPC Overhead
	5.2 Value Serialization
	5.3 Insert Performance
	5.4 Discussion

	6 Conclusion and Future Work

