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Abstract
In this extended abstract1, we introduce similarity inclusion dependencies (sINDs). They extend the
traditional notion of inclusion dependencies (INDs) by relaxing the dependency definition using a
similarity measure: otherwise valid INDs can be discovered even in the presence of minor data errors,
such as typos or different formatting. We present Sawfish, the first algorithm to discover all sINDs in a
given dataset efficiently. Our algorithm combines approaches for the discovery of traditional INDs and
string similarity joins with a novel sliding-window approach and lazy candidate validation.

1. Similarity Inclusion Dependencies

Data dependencies are an important type of metadata and are a crucial component of data
profiling. Traditional inclusion dependencies (INDs) express that the tuples of one column-
combination are contained in the tuples of another column-combination. Their discovery
assumes clean data: all tuples of the dependent column-combination must be exactly equal in
the referenced column-combination. However, the ever-increasing volume of data also leads to
more “dirty” data [2], giving rise to relaxed dependencies [3]. While there has been research
for other dependencies to allow for similar values, such as functional dependencies [4], there
is no corresponding notion yet for INDs. Thus, we introduce similarity inclusion dependencies
(sINDs). In contrast to traditional INDs, an sIND holds if, for all dependent values, there exists
a referenced value that is at least similar. sINDs support arbitrary similarity measures and
configurable similarity thresholds. In this work, we consider representatives of both edit-based
and token-based similarity measures: the Levenshtein distance [5] and the Jaccard similarity.

sINDs can serve many of the same use-cases as traditional INDs, including, in particular, the
discovery of foreign key candidates and joinable partners [6], as well as assisting in schema
design [7]. To illustrate the usefulness of sINDs, we present an example for a fictitious football
tournament in Figure 1. Table (a) shows the final results after all games, and Table (b) lists all
goalkeepers in the tournament. We would assume that the values of the club column of Table (b)
are contained in the values of the name column of Table (a). However, multiple goalkeepers
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made minor spelling mistakes in their club name. Despite these mistakes, we want to discover
the dependency.

Figure 1: Example relations of a football tournament

(a) Final Results

results
name points

SpVgg Beelitz 4
Potsdamer SC 9
SpVgg Bernau 4
VfL Potsdam 0

(b) Participating Goalkeepers

goalie
p_id club

202 SpVgg Beelitz
216 SpVgg Beelittz
469 Potsdamer SC
617 SpVgg Be_nau
692 ViL Potsdam
853 Potsdamer SC

2. The Sawfish Algorithm and Beyond

The general validation idea of Sawfish is that it is sufficient to find a single counterexample
to invalidate an sIND candidate. Since it is infeasible to directly compare every dependent
value to every referenced value, Sawfish uses an inverted index. After building the index for a
referenced column, each dependent column is probed against the index. If each dependent value
is similar to at least one referenced value, the sIND is emitted as a valid dependency. Given that
a dependent value can only match index values within a certain interval, we can reduce the size
of the index. Like a sliding window through the occurring lengths of the dataset, we iterate
the dataset length-wise and build new indices only on-demand while removing unused indices.
Besides reducing the index size, we also do not need to build the entire index if a column is no
longer referenced by any other column.

In the original evaluation, we show that Sawfish scales well in the number of rows, and in
the number of columns. Compared to a naïve string similarity join baseline, we outperform it
by a factor of up to 6.5. To assess whether the discovered similarity inclusion dependencies
can indeed indicate joinability in the presence of typos or other data errors, we ran Sawfish
on a subset of the 2015 Web Table Corpus (WTC) [8]. In total, we observe 1044 sINDs that are
not traditional INDs. We manually annotated them to assess their genuineness. Overall, we
found that there are 161 (15%) meaningful sINDs, 671 (64%) coincidental sINDs, and 212 (20%)
erroneous (wrong header detection) sINDs. However, we find two criteria for the WTC data
that reduce the number of coincidental sINDs significantly. First, the maximum number of
characters of any value of the dependent side is above three. Second, the portion of dependent
values that match only similarly to a value on the referenced side is below 30%. Given these
two filters, there are only 33 (20%) coincidental sINDs, but 101 (64%) meaningful sINDs.

An obvious next step, after discovering sINDs, is to “repair” them by slightly modifying
dependent or referenced values to achieve proper inclusion. In future work, we address the
challenge of identifying minimal repairs under various distance measures.
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