
SciFi - Increasing Database Adaptation in Data Science
with an Embedded Asset Store
Annett Ungethüm1, Martin Poppinga2, Katharina Kögel3 and Matthias Rarey4

1Universität Hamburg, Center for Data and Computing in Natural Sciences, Germany
2Universität Hamburg, Department for Informatics, Databases and Information Systems, Germany
3Universität Hamburg, Germany
4Universität Hamburg, ZBH - Center for Bioinformatics, Germany

Abstract
During the complex discovery processes in data science, multiple kinds of data have to be managed,
e.g. experimental data, metadata, and computationally produced data. Managing this data has become
a bottleneck limiting the potential rate of discoveries. On the one side, creating individual solutions
to handle the data produces an overhead on the scientists time. On the other hand, existing database
management systems which could reduce the development time while offering sophisticated optimization
and execution engines, are often not used for a variety of reasons. For instance, the initial training to use
such systems takes time, which is a rare good amongst scientists. Further, even the existing systems
and repositories cannot completely fulfill the needs for data management in science while providing the
necessary convenience. To simplify the process of storing, accessing, and sharing data, while providing
reasonable performance, digital asset management (DAM) systems provide solid solutions. While DAM
is already common in other fields, such as photography or music, it is hardly used in science, mainly
due to a lack of available and applicable systems. To close this gap, we present ScienceFiles (SciFi), an
embedded asset store specially developed for scientific data. SciFi consists of an extensible framework,
an extensible shell which serves as a stand-alone asset store, and an extension for PyTorch to make data
directly available for machine learning. To ensure the usability of our solution, we chose a lightweight
design that runs on laptops and lab PCs without requiring special permissions or regular administration.

1. Introduction

Discovery processes in science incorporate an increasing amount of data from high resolution
and high throughput instruments, intermediates and results of computational analyses, and from
a growing number of collaborative work. The management and access of this data has become
a bottleneck in data analysis pipelines. In a community of system engineers and in large-scale
applications, databases are commonly used to manage huge amounts of data. However, most
data scientists are not system engineers and do not work with large-scale applications. The
focus of data scientists is mostly on the methods and the used toolkits or hand-crafted scripts,
not on the management of the used and produced data. Although, they could benefit from
the optimized processing of analytical queries in modern database management systems. The
applications themselves are often highly specialized but small pieces of software which are

LWDA’24: Lernen, Wissen, Daten, Analysen. September 23–25, 2024, Würzburg, Germany
$ annett.ungethuem@uni-hamburg.de (A. Ungethüm); martin.poppinga@uni-hamburg.de (M. Poppinga);
katharina.koegel@studium.uni-hamburg.de (K. Kögel); matthias.rarey@uni-hamburg.de (M. Rarey)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:annett.ungethuem@uni-hamburg.de
mailto:martin.poppinga@uni-hamburg.de
mailto:katharina.koegel@studium.uni-hamburg.de
mailto:matthias.rarey@uni-hamburg.de
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


Figure 1: Landscape of systems for digital asset management (DAM) in Science

only developed and used by a small group of researchers. One reason for this is the fear of
being scooped. Thus, applications are not always published and not evaluated by external
scientists. Another reason is the limited range of potential users for niche research fields.
Limited privileges and restricted computing times on HPC clusters are an additional obstacle to
migrating these applications to a larger system. As a result of this situation, the most popular
computing platforms for data science in 2021, when this question was last asked in the Kaggle
survey, were still laptops and personal computers [1]. The same review one year later in 2022,
which is the most current available version, shows more interesting aspects, e.g. that a third of
the respondents did not spent any money in the cloud. Further, 18.4% of the respondents do not
use any data storage and another 22.3% use SQLite which is not optimized for analytical queries.
Moreover, SQL has decreased in popularity while the popularity of Python has increased since
2021. These developments show that data systems are either not used at all or not in an efficient
way.

Raasveldt et al. already showed that current solutions are not equipped for analytical work-
loads on local personal computers [2]. As a consequence, they developed DuckDB, an embedded
RDBMS for analytical workloads. However, not all data is relational, and thinking in relations is
not intuitive for every data collection. Furthermore, to understand data, metadata is necessary
while there is no universal way of how metadata is stored, processed, and presented. In the worst
case, it is implicit knowledge of the scientist. In the best case, it is organized and digital, e.g. in
an excel sheet but only rarely in a relational database. Even if it is organized, the connection
to the data has to be done manually, e.g. for finding data which fulfills certain requirements.
This is often done by hand-crafted scripts which have to be rewritten for every new dataset.
This is against the concept of FAIR (findable, accessible, interoperable, reusable) data sharing
principles [3, 4].

Public repositories of scientific data sometimes offer additional functionality or even a whole
processing pipeline, e.g. the Protein Data Bank1[5]. However, these are curated repositories
of highly domain-specific data. They are not systems which can be used with any data and
instantiated at any location. A class of systems which is able to fulfill this, is digital asset
management (DAM) systems.

DAM systems are used for organizing and querying data and metadata. Popular DAM
applications like Adobe Lightroom, Google Photos, or Apple Photos are widely used and provide
a local version as well as a server-based solution. This way, asset management has become

1RCSB.org, Accessed: 2023-12-12



a tool and not a task for creatives, just like it should be a tool for scientists rather than time
consuming additional work. In a scientific context, the mentioned systems could be used for
managing images that are the result of experiments or computational methods, but not for
managing the according metadata. While metadata for a photographer is the information stored
in the exif tags, scientific metadata can include an arbitrary number of additional entries, e.g.
environment variables, textual descriptions, and responsible scientists. Accordingly, the queries
on metadata also look different. While a photographer might filter “all images with a 5-star
rating”, a simple query of a scientist will rather be in the fashion of “Which structure has a size
smaller than x and was observed in environment y?” to name just an example. Such queries are
prime examples for analytical queries. In science, DAM systems are mostly domain-specific
like BIDS-manager for electrophysiology and neuroimaging [6]. This way, the necessary and
optional fields for metadata entries can be predefined. In contrast to these systems, DERIVA [7]
is made for general purpose usage. However, it is designed as a collection of web services.
Thus, it is not an ideal solution for local processing on a personal computer. Figure 1 shows an
overview of the existing DAM environment, including some examples. There is a clear gap for
serverless general purpose scientific asset management.

In this work, we aim to close this gap by introducing SciFi, an embedded asset store for
scientific data. To encourage the use of our solution, we also build an integration into PyTorch,
one of the most popular frameworks for machine learning. In detail, our contributions are the
following:

• First, we give a general overview of the requirements of scientific asset management and
explain which systems we consider to incorporate into our solution in Section 2.

• Then, we present our architecture in Section 3.
• In Section 4 we present an evaluation using real world datasets.
• We discuss related work in Section 5.
• Finally, we give a brief outlook and conclusions in Section 6 and Section 7.

2. Background

There is a vast variety of reasons why data systems are not used by all scientists working
with data. They range from missing privileges on the used systems to a lack of resources to
administrate a local server setup, or the time to learn a new query language. Additionally, the
specific processes and formats differ between domains and even between individual use-cases.
However, according to our experience, there are common requirements across all domains:

• Simplicity. It must be easy to get existing data into the asset store. This means, that the
user should not be required to define a schema for the assets or generally do anything
that is more complicated than just copying data to another file.

• Fast retrieval of assets. Ideally, retrieving an asset via the DAM system should be faster
than opening, reading, and returning the contents of a file on disc. This is especially
crucial if a large number of files is processed.

• Efficient usage of disc space and the file system when storing assets. Using a flat
file system to store large numbers of files increases the access time to these files and can
even make the file system unusable. Further, when storing files smaller than the cluster



size of the disc, the remaining space in the cluster is not usable to any other file. Thus,
the combination of many and small files results in slow access on data which blocks
more space than necessary. Although disc space is relatively cheap, lengthy processes
for material procurement, especially in publicly funded research institutions, can still
produce a lack of available storage space.

• Archiving data. Discs dedicated to archiving data usually have a large capacity, but also
large cluster sizes. This makes the previously mentioned issue of storing many small files
more severe.

• Storing, scanning, and analyzing metadata with reasonable performance. Meta-
data is usually structured data, often organized in tables. Despite there being powerful
systems which are specialized on fast processing of such data, the hand-crafted python
script or excel are common tools to be used.

• Connection between assets and metadata. It must be possible to retrieve not only the
metadata for a given asset, but also assets depending on their metadata or filters on their
metadata.

• Export of datasets for sharing data to ensure reproducibility. This can be reached
by using free and open-source formats, and systems which support these formats.

Based on these requirements, we built our DAM system, SciFi, on top of two different kinds
of database systems: 1) For storing the metadata, we use a relational database system which
offers a powerful query optimizer and high performance for analytical tasks. 2) For storing the
assets, we use a key-value store (KVS), which offers limited functionality but can ingest every
type of document. It is able to return assets with reasonable performance, mostly independent
of the number of stored assets. This offers some advantages over storing the assets in a blob
type column in a relational database. For instance, the data and metadata stay separated and
can be exchanged easily and fast, e.g. if the format of the data changes. Another benefit is
the optimization for fast writing and returning of values in a key-value-store. This concept of
combining a KVS and a relational database is close to DERIVA [7] which, amongst other layers,
uses PostgreSQL to store and query structured data, and an object store which holds arbitrary
byte sequences. In contrast to DERIVA, our solution is supposed to run on laptops and personal
computers without any overhead for administration. Thus, we only consider embedded systems.
Another required features is that these systems must be open-source as requested by a number
of scientists.

3. SciFi Architecture

The key element of SciFi is the combination of an embedded key-value store and an relational
database to create a serverless asset store. While we aim to provide an easily applicable
standalone solution, our approach should also be extensible and customizable to the needs of
individual user groups. For this reason, we developed an extensible C++ framework and an
application on top of it. For making data stored with SciFi directly usable for machine learning,
we also extended the Dataset class of PyTorch.



Figure 2: Overview of SciFi. Metadata and file contents are stored by different engines and in a different
format to ensure compatibility with all file types while enabling fast analysis of metadata. Alternative
backends can easily be plugged in and the shell is extensible according to the needs of the users.

3.1. Architecture overview

Figure 2 shows an overview of our SciFi architecture. It consists of four main parts:
SciFi framework (blue): Our framework incorporates two different storage interfaces, one

for the assets (DataStore) and one for the metadata (MetaStore). The access to the two storages,
i.e. the API, is provided by a central storage class. The DataStore is an interface for a key-value
store (KVS) while the MetaStore is an interface for a relational database. Hence, a backend for
each storage is required which implements system specific functions, such as the get, put, and
delete functions of the KVS. We provide standard backends. However, a custom backend (grey)
can easily be plugged in by providing the according template parameter when instantiating the
central storage class. Since the DataStore and the MetaStore do not communicate directly with
each other, the backends for them are independent of each other. The identification of assets
and their metadata is done by a unique identifier. In the DataStore, unique identifiers are the
keys of the key-value pairs. In the MetaStore, the unique identifier is stored as the primary key.
The central storage class is responsible for forwarding the queries to retrieve the assets and
metadata with a matching key.

SciFi shell (green): The SciFi shell is an extensible application prototype providing basic
functions, e.g. scanning a directory for assets or writing queried assets and metadata to the
file system. Custom functions can be added to the shell by calling the register_function
method and providing the function pointer, a command string, and a help string as parameters.
Once all functions are added or if the predefined functions are sufficient, the run method is
used to start the shell.

Application (red): While the SciFi shell already runs as a standalone application, it can be
extended as explained above. Alternatively, the SciFi API may be accessed directly. This is
useful when there is already existing code written by a scientist which should now run on data
stored by SciFi. In this case, the contents of queried assets can be provided directly as a return
value instead of being written to disc, which accelerates the access to this data significantly.

PyTorch integration (yellow): There is a number of different AI frameworks and libraries



used in data science with PyTorch being one of the most popular. PyTorch is a framework for
machine learning (ML). For enabling the users of SciFi to directly use their data in ML applications
without having to write it back to the file system, we extended the PyTorch framework. In a first
step, we wrapped the access to the DataStore and the MetaStore using boost.python to create a
python library (scifi.so). Then, we extended the Dataset class of Pytorch using this library. This
way, data in the DataStore can be accessed in a map-style manner. Additionally, the access to
the MetaStore is used to determine the number of available assets as well as for filtering assets
by their metadata. The figure shows example code of how this access works in practice.

3.2. The storages

The MetaStore and the DataStore are implemented as interface classes. In this context, a backend
is a specialization of these classes which uses an RDBMS resp. a KVS to provide the system
specific access methods to the data. For a serverless asset store, we can only consider embedded
RDBMS and KVS to create our default backends.

DataStore: The DataStore should be able to store random data, independently of the format.
For this reason, we chose to store the assets in a KVS. A backend for the DataStore only has to
implement a small number of system-specific functions. The functions insert, remove, and
getSingle wrap the put, delete, and get commands provided by every KVS. Additionally,
an open function is required which opens the database and sets the initial options if required.
Finally, for being able to create and read portable files containing all asset data, import and
writePortable have to be implemented. WritePortable creates a single data file from the
contents of a given set of files. This data file is persistent and self-contained, i.e. independent of
any log files or structures in main memory. Import ingests an existing self-contained file into
the asset store. All system-independent code is already implemented in the DataStore interface,
e.g. scanning of directories or creation of the keys.

Unlike relational databases, key-value stores are often designed as embedded systems. Some
examples are LevelDB, RocksDB, embedded Redis, and BerkeleyDB. We decided on RocksDB2for
the standard backend, which is built on the code basis of LevelDB3, but with a focus on being
scalable to larger systems. As even conventional laptops are equipped with an ever growing
number of cores and larger memory, and with the rising availability of fast remote storage, this
is an important design factor. For instance, RocksDB uses parallelized I/O operations wherever
possible. Additionally, it provides the possibility to write sorted data directly into a Sorted
String Table without requiring intermediate data like skiplists or write ahead log files. This is
crucial to generate portable data files.

MetaStore: The MetaStore holds two different kinds of metadata: automatically generated
data, e.g. file extensions, and user-defined data, which can be anything as long as it is organized
in a table. To spare the users learning SQL for filtering their data, they only have to provide
their constraints, i.e. the WHERE-clause. The remainder of the query is automatically created.
While this restricts the possible expressivity of the statement, it is sufficient for most use-cases
and can act as an efficient prefilter for more complex scenarios.

2rocksdb.org, Accessed: 2024-07-14
3https://github.com/google/leveldb, Accessed: 2024-07-14



The functions required by SciFi are limited, but each potential backend system has its own
way of iterating and representing query results, e.g. inserting special characters as delimiters
or returning different string formats. This means that each backend has to implement the
treatment of results individually. It is crucial that they are in a uniform format when they are
passed to the DataStore via the central storage class. In detail, the following functions are
required for a MetaStore backend: 1) open creates a new database or opens an existing database,
2) execQuery, getResultAsString, and printResult executes a SQL query, returns the
result of the last query as string, and prints the result, 3) getIDsByConstraint takes a filter
argument for the metadata, i.e. the WHERE-clause of a SQL query, constructs the complete
SQL query, and returns all results. The interface implements more functions, e.g. to write
the metadata of an asset into a file. However, they rely on the functions implemented in the
backend.

In SciFi, we expect more analytical queries than transactions. For instance, changing or
adding data is only done whenever an experiment or a data producing script has finished. The
time-consuming part is the analysis of this data, e.g filtering it for certain constraints. Hence,
we will use a system designed for online analytical processing (OLAP). The list of embedded,
free, and open source OLAP systems is short but existing. It contains DuckDB [2] and the
embedded versions of MonetDB, MonetDB/e and MonetDBLite [8]. We decided on DuckDB [2]
as our standard backend, which is a column-oriented RDBMS offering an in-memory mode
and a persistency mode. While it uses the shell and test cases of the more popular SQLite,
its implementation relies on more analytics-optimized and state-of-the-art methods, e.g. a
vectorized execution engine, and an optimizer which unnests subqueries before creating the
logical query execution plan.

Meta Data Schema The first table holding user-defined metadata is always created automat-
ically. Each additional table requires the user to provide a foreign key to this first table. This
effectively enforces a Star Schema. For the automatically retrieved meta data, four tables are
created by SciFi:

• filedata contains the unique key of each asset, whether this asset is compressed, the
original path to the file, and the file extension.

• metainfo has a record for each relation created by the user. It contains the foreign key
that connects the respective relation to the central metadata table.

• filter A user can store their frequently used filters. These are realized as views on the
MetaStore side.

• metadata The fact table of the user-defined meta data. This table is created automatically
but can be redefined by the user.

While some of the stored information is redundant because it also exists in the tables of the
information schema of a relational database system, the access and usefulness of these internal
tables can vary between different systems. Hence, the redundancy is a design decision to keep
the number of required functions in the backend low.

3.3. API

To use the API, the central storage class must be instantiated. If no custom backends are
provided as template parameters, the default backends are used. The member functions of the



a) Protein Data Bank[5] b) Radio Galaxies [9] c) Performance

Figure 3: Used disc space and performance. a) and b) The used disc space in the original format and
using SciFi. For very small files, we can clearly see the offset of unused disc cluster space. The Protein
Data Bank (a) encodes data and metadata in the same file. Thus, we did not distinguish between the
size of the assets and the meta data. For the Radio Galaxy dataset (b), the meta data in SciFi is slightly
larger because of the additional automatically created meta data. c) The performance of SciFi compared
to a conventional approach. Note that the scale is logarithmic and that the data for the parser approach
was reduced in (ii) and (iii).

created instance can now be used to work with SciFi. Names for existing persisted data of
the MetaStore and the DataStore can be provided as parameters. If the names do not exist, a
new store is created. In detail, the main functions provided by the API are the following: a)
scanning directories for assets, b) adding metadata manually or from a csv file, c) return assets
and metadata depending on filters on the metadata, d) return assets by their unique IDs, e)
load metadata from a remote server. Assets and metadata can be written to files or returned
as strings for direct further processing. A number of parameters can be used to ensure the
exact desired behavior of each API call. Especially the function to scan a directory is highly
parameterized. For instance, the default to create a key is to take the file name. Since this is
not always what is used in the table containing the user-defined metadata, the creation of the
keys can be modified, e.g. by removing prefixes and the file extension, or including a part of the
directory hierarchy in the key.

Files can also be written to a temporary file system in main memory. The target directory,
and if it points to disc or to main memory, is defined when instantiating the central storage.
A symlink for convenient access is automatically created. Writing to a temporary file system
has a number of advantages. First, it can improve the performance for other tools using the
assets without having to change the access method, especially if the attached hard drive is on
the slower side of the spectrum. Second, the risk to spam the disc with intermediates or copies,
which will never be used again, is low. In some cases, copies of files are made for providing
data in a folder structure appropriate for a certain tool. If this data is copied to a temporary
file system, it is deleted at the next reboot. Only the original base data is left in the asset store.
Hence, no data is lost, but there is also no redundant data.

4. Experimental Evaluation

We conducted our experimental evaluation on a local setup because we designed our system for
being used locally. Our test system is a notebook equipped with an Intel i5-1145G7 CPU, which
runs at a base frequency of 2.6 Hz and a peak frequency of 4.4 GHz. It features 4 physical cores
and two threads per core. There are 8 GB of DDR4 main memory. The L1 data cache is 128 KiB,



the L2 cache is 5MiB, and the L3 cache is 8 MiB. It runs on Ubuntu 22.04 LTS.

4.1. Data Sources and Data Size

Our test data originates from two public data sources. The first data source is the Protein Data
Bank (PDB)[5]. The PDB[5] is a dataset of experimentally derived 3d structures of biological
molecules. With over 60,000 structural biologists and data depositors having contributed more
than 200,000 structures4, the PDB is a corner stone of structural biology. It serves as input for
other widely-used projects, such as AlphaFold[10]. Each structure is uniquely identified by its
PDB ID, which is a 4 character code, and stored in an individual plain text file. This file contains
meta data as well as the experimentally derived data, e.g. coordinates. We used an established
parser for PDB files5 to retrieve the metadata, which we then used to create the user-defined
part of the MetaStore via the API. To create the DataStore, we could directly use the API without
additional steps.

The second source is a set of radio galaxy images with curated labels[9]. The images are
provided as .png files. The version we used contained 2158 different galaxy images. The
metadata is provided as 3 separate csv files. We could use the API of SciFi to create the MetaStore
and the DataStore without any intermediate steps.

Figure 3(a) and (b) show the required disc space of the original data and the same data in
SciFi. The PDB dataset is available in different formats, all of them being one plain text file per
PDB ID. The figure shows the legacy PDB format which produces smaller file sizes than the
more recent mmcif format. However, both formats are widely used in research and existing
pipelines depend on the data being in the exact format that is expected. Thus, providing the
whole dataset in a relational format only, would break these pipelines. Since both datasets use
an individual small file for each asset, the space cannot be used efficiently because each file
takes up a whole disc cluster (block), even if the content is smaller than the cluster. This issue
is efficiently solved by using a key-value store as the backend of the DataStore. The meta data
only requires a small fraction of the overall size. However, the original PDB files encode data
and meta data within the same file. Thus, we do not distinguish the sizes for the assets and the
meta data in the original PDB data.

4.2. Performance

We chose the PDB dataset to show the performance benefits of SciFi over other approaches,
because the size of the dataset exceeds the main memory size of our system. Our comparison is
between SciFi and the use of the previously mentioned PDB parser.

We conducted the following micro benchmarks:
(i) Load an asset identified by its PDB ID into main memory. The parser is not needed for

this benchmark because the file path can be reconstructed if the PDB ID is known.
(ii) Find all entries which fulfills the following criteria: country of citation must be ’UK’.

(iii) Find all entries which fulfill two criteria and require a join in our MetaStore, i.e. the country
of citation must be ’UK’ and the the database status must be ’released’. In the PDB file, the

4https://www.rcsb.org/pages/about-us/index, accessed 2023-12-13
5https://github.com/PDB-REDO/libcifpp, accessed 2023-12-13



latter is encoded as ’_pdbx_database_status.status_code=”REL”’.
For the parser, we selected only the first half of the dataset for our micro-benchmark (ii) to

reduce the query runtimes in the conventional approach to a tolerable level, while SciFiuses
the whole dataset. This also means that not all results are found. Even with this reduction, the
constant thermic stress of accessing an internal disk constantly, caused bitflips on our hard
drive. We did not experience this issue when creating our DataStoresince we were not using
an integrated hard drive for this purpose. While most of the damage could be reversed, the
folder containing the PDB data was lost and we had to download it again. For this reason, we
used only 10 GB of the original dataset for our micro-benchmark (iii). SciFiwas using the whole
dataset in all micro-benchmarks. Thus, our first and probably most important observation is
that SciFi enables the user to work with datasets which would be too large to work with using a
conventional approach on consumer-grade hardware.

Figure 3(c) shows the results of our micro-benchmarks. We use a logarithmic scale because
the differences in (i) and (ii) are too large to show the results for both approaches on the same
linear scale. The results show the mean of 5 runs. The first benchmark shows that there is little
difference in performance for providing an asset as long as the ID of the asset is known. Since
(i) requires no actual query processing beyond a simple filter, the difference in performance
shows only the difference of providing data from an already opened file and data from a file
which still has to be opened. In micro-benchmark (ii), the overhead of parsing thousands of text
files is clearly noticable. Not only did our hardware experience the mentioned thermal stress,
the execution took 2.2 hours. For this reason, we run this parser micro-benchmark only once.
In contrast, SciFi was able to return the results in 84 ms with no run taking öonger than 85
ms. This difference is not surprising because SciFi does not require to fetch and scan GBs of
data from disc, but only runs a query on the much smaller MetaStore. In micro-benchmark (iii),
we used the further reduced data set for the parser. This way, the query executed within 14
minutes, which is still magnitudes longer than the time required to execute the query in SciFi.
We conducted multiple different queries with a varying number of filter attributes and remained
at a relatively constant execution time of 14 min when using the parser. The bandwidth of the
disc access is the main bottleneck in this conventional approach and cannot be masked by a
higher number of comparisons during parsing.

5. Related Work

Most asset stores for scientific data are domain-specific and limited to few document formats.
Examples for domain-specific asset stores are XNAT [11] for neuroimaging, BIDS-manager
for electrophysiology and neuroimaging [6], and OME/OMERO for bioimaging [12]. Some
traditional database management systems (DBMS) offer extensions for selected domains, e.g.
PostGIS is a PostgreSQL extension for geospatial data. However Bartoszewski et al. show that
PostGIS is not in all cases superior to document databases when running equivalent queries [13].
There are also domain-independent DBMS which have been developed because of a need for
such systems in data science. For instance, genetics researchers played a role in the initial idea
of developing DuckDB [14], which is a relational system. Another kind of database systems are
array databases. SciDB [15] is an array database which was developed with scientific use-cases



in mind. Thus, DuckDB and SciDB both rely on a single storage layout and query method.
Combining assets and metadata with one of these DBMS requires additional effort by the user
which SciFi avoids. However, these systems are candidates for the backends of our approach as
we have already demonstrated with DuckDB.

To the best of our knowledge, the only previously existing general purpose asset store for
scientific data is DERIVA [7]. DERIVA is built as a collection of web services. In contrast to this,
SciFi targets data management which happens locally and close to the user, i.e. on individual
laptops and lab computers.

Further, there is a clear distinction between repositories and other data sources with added
functionality for specific domains, e.g. the Protein Data Bank[5] that we used in our evaluation,
and the underlying systems which handle such data. SciFi is a system solution, not a repository.

6. Outlook

SciFi has potential for different further developments. On the one hand, the usability can be
further improved over the current early development stage. For instance, a graphical user
interface, and the provision of binaries specialized for popular datasets, e.g. PDB or AlphaFold,
are planned.

On the other hand, our asset store is a foundation for the development of an integrated data
analysis (IDA) pipeline. Since such pipelines are usually bound by the ability to provide and
analyze data fast and in a simple way, it is a logical step to apply a system using integrated
databases which are optimized for exactly these tasks. The development towards an IDA pipeline
can incorporate a number of steps and directions. One of these directions is the implementation
of DataStore backends which are specialized on heavily used document types, e.g. hdf5. Another
step could be the translation of the contents in the DataStore from a generic key-value pair into
more structured content. For instance, there is already existing work about table recognition in
spread sheets which treats also non trivial cases [16, 17, 18, 19]. The same approaches can be
used for a more sophisticated automatic import of metadata. The provision of interfaces for
other popular AI frameworks, e.g. Tensorflow or Keras, is another step towards a fully working
IDA pipeline. Alternatively, the extension of the framework by commonly used algorithms, e.g.
genetic algorithms, is a promising goal. Finally, interoperability with more complex and not
necessarily local IDA pipelines, such as DAPHNE [20], can increase the use of SciFi in everyday
lab life.

7. Conclusions

We presented SciFi, a framework for an embedded asset store for scientific data along with
a sample application and an integration into PyTorch. This asset store closes a gap between
existing solutions which are either domain-specific or dependent on a client-server architec-
ture requiring administration and privileges for installation. In contrast to this, SciFi enables
researchers to work not only faster because they have their data at hand, but also offline and
on every available machine, mostly regardless of any limitations set by the IT department.
Additionally, a combination of two databases with all their benefits is used to organize data



without the requirement to learn a new query language. A connection between metadata and
data is done automatically, such that no additional scripting is necessary for this task. We are
confident that SciFi is a solid foundation for an embedded integrated data analysis (IDA) pipeline
for use in the lab and at home office.

References

[1] P. Mooney, 2021 & 2022 kaggle data science & machine learning survey, 2021 - 2022.
[2] M. Raasveldt, H. Mühleisen, Data management for data science-towards embedded analyt-

ics., in: CIDR, 2020.
[3] M. D. W. et al., The fair guiding principles for scientific data management and stewardship,

Scientific data (2016).
[4] W. Dempsey, I. Foster, S. Fraser, C. Kesselman, Sharing begins at home, arXiv preprint

arXiv:2201.06564 (2022).
[5] H. M. Berman, J. Westbrook, Z. Feng, Gilliland, et al., The protein data bank, Nucleic acids

research (2000).
[6] N. Roehri, V. S. Medina, A. Jegou, B. Colombet, B. Giusiano, P. Aurélie, F. Bartolomei, C.-G.

Bénar, Transfer, collection and organisation of electrophysiological and imaging data for
multicentre studies, Neuroinformatics (2021).

[7] R. E. Schuler, C. Kesselman, K. Czajkowski, Accelerating data-driven discovery with
scientific asset management, in: e-Science, 2016.

[8] M. Raasveldt, Monetdblite: An embedded analytical database, in: SIGMOD, 2018.
[9] F. Griese, J. Kummer, P. L. Connor, M. Brüggen, L. Rustige, First radio galaxy data set

containing curated labels of classes fri, frii, compact and bent, Data in Brief (2023).
[10] J. Jumper, R. Evans, A. Pritzel, T. Green, et al., Highly accurate protein structure prediction

with alphafold, Nature (2021).
[11] D. S. M. et al., The extensible neuroimaging archive toolkit, Neuroinformatics (2007).
[12] J. R. Swedlow, I. G. Goldberg, K. W. Eliceiri, O. consortium, Bioimage informatics for

experimental biology, Annual review of biophysics (2009).
[13] D. B. et al., The comparison of processing efficiency of spatial data for postgis and mongodb

databases, in: Beyond Databases, Architectures and Structures, 2019.
[14] M. Raasveldt, H. Mühleisen, Talk: Duckdb - an embeddable analytical rdbms, 2020. URL:

https://db.in.tum.de/teaching/ss19/moderndbs/duckdb-tum.pdf.
[15] M. Stonebraker, P. Brown, D. Zhang, J. Becla, Scidb: A database management system for

applications with complex analytics, Computing in Science & Engineering (2013).
[16] E. K. et al., Table recognition in spreadsheets via a graph representation, in: DAS, 2018.
[17] Z. Chen, M. Cafarella, Automatic web spreadsheet data extraction, in: Proceedings of the

3rd International Workshop on Semantic Search over the Web, 2013.
[18] M. D. Adelfio, H. Samet, Schema extraction for tabular data on the web, VLDB (2013).
[19] J. E. et al., Deexcelerator: a framework for extracting relational data from partially

structured documents, in: CIKM, 2013.
[20] P. Damme, M. Boehm, M. Dokter, K. Innerebner, R. Kern, Daphne: An open and extensible

system infrastructure for integrated data analysis pipelines (2022).

https://db.in.tum.de/teaching/ss19/moderndbs/duckdb-tum.pdf

	1 Introduction
	2 Background
	3 SciFi Architecture
	3.1 Architecture overview
	3.2 The storages
	3.3 API

	4 Experimental Evaluation
	4.1 Data Sources and Data Size
	4.2 Performance

	5 Related Work
	6 Outlook
	7 Conclusions

