
Knowledge Retrieval with LLMs using
Context-Specific Intent and Slot Classification
Julian Schubert1, Markus Krug1 and Joachim Baumeister1,2

1denkbares GmbH, John-Skilton-Straße 8, 97074 Würzburg
2University of Würzburg, Am Hubland, 97076 Würzburg

Abstract
A significant proportion of applications in the industrial domain rely on RAG and synthesise structured
knowledge into strings of text. This approach, however, occasionally produces answers that are factually
incorrect. This limits the applicability of LLMs in industrial settings, where factual correct answers
are a critical requirement. To address this issue, we propose a system for intent-based closed question
answering that can be applied when structured factual knowledge is available, for instance in a Knowledge
Graph. This system first employs an intent grammar to narrow down the possible user intents. The
slots of each intent can then be filled context-sensitively, with the aim of improving upon existing NER
techniques. Following a verification step during which the model is prompted to ensure that the correct
intent and entities have been extracted, a SPARQL query can be executed and verbalised using rule-based
methods.
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1. Introduction

The recent success of Large Language Models (LLMs) revitalized the progress in many fields
in Natural Language Processing. As LLMs predominantly work with textual outputs it is
almost natural to utilize them as Chatbots [1, 2]. Albeit their impressive capabilities of forming
coherent and logical texts, LLMs struggle with factuality [3] and solving complex tasks that
require planning and reasoning [4, 5, 6]. Chatbots in the industrial domain can revolutionize
the way internal data is accessed - it is natural to us to satisfy our information needs using
natural language, the main interface of an LLM. As factual incorrect answers pose severe risks
in industrial settings, most current applications of LLMs in the industry utilize an approach
based on Retrieval Augmented Generation (RAG) [7, 8]. Standard RAG incorporates knowledge
stored in private data into the reasoning process of a LLM. One rather paradox consequence
of RAG is that structural data, such as data bases and knowledge graphs, has to be converted into
raw text in order for the LLM to understand and make use of the data. The risk of non-factual
information is mitigated by also presenting the data the information is obtained from to the
user. As this concept is still rather new in industrial settings such AI based systems have yet
to earn their trust by the users. In this positional paper we outline an approach that allows
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the combination of structural data, in our case represented as knowledge graphs, and LLMs
in the setting of Information Retrieval (more precisely question answering). Our proposed
approach mitigates two of the aforementioned main weak spots of LLMs: (i) Non-factuality, and
(ii) inability to plan.

2. Related Work

This section provides a brief overview of RAG, along with an examination of recent advance-
ments in intent-based closed question answering.

2.1. Retrieval-Augmented Generation

In contrast to fine-tuning an LLM for a specific domain, RAG is a method that aims to improve
model answers by enriching the context of the LLM with useful information. RAG works through
an initial retrieval step where an external data source is queried to gather and rank relevant
information. This information is then used to inform the subsequent generation phase. The
incorporation of retrieved evidence into the responses significantly enhances the accuracy and
relevance of the generated answer [7, 9].

2.2. Intent-Based Closed Question Answering

Rather than relying on the model to directly generate an accurate response from the provided
documents, intent-based question answering employs a model to narrow down the user’s intent
and then attempts to resolve this given intent. For instance, Chen et al. fine-tuned a BERT-
Model [11] to jointly model intent classification and slot filling on the ATIS Dataset [12]. To
enhance the modelling of the relationships between slots and intents, Qin et al. proposed the
utilisation of an LSTM [14] to construct an adaptive intent-slot graph interaction layer. This
layer explicitly establishes correlations between slot and intent nodes. Furthermore, graph
attention networks are applied to each token, enabling the model to capture and integrate
fine-grained intent information for precise token-level slot prediction.

2.2.1. Using Named Entity Recognition for Slot Filling

Each intent has various slots that need to be filled in order to answer the input query. For
example, the intent Repair Component has a slot with the identifier of the component that
should be repaired. We propose using Named Endtity Recognition (NER) to fill these slots and
will therefore give a briev overview of recent developmends in this field. GPT-NER transforms
the traditional sequence-labeling task of NER into a generation task. Instead of making a
prediction for each token, GPT-NER employs special markings within the generated text to
identify named entities. Following this prediction step, a verification step is performed where
the model is prompted to confirm the accuracy of the extracted entities. [15, 16]. Our proposed
approach builds upon the success of applying LLMs for NER. In contrast to general NER, our
system is limited to a certain domain allowing for context-specific prompting and therefore,
potentially further improvement of existing results.



3. Approach

Generating factual correct outputs from an LLM is very hard in an open setting as the amount
of potential queries is unrestricted. Therefore, we restrict queries to a pre-defined set of user
intents and use RAG as a fallback for queries outside of the current scope of our system. In
this positional paper we will only focus on outlining a model for the technical service in the
engineering domain that requires structured data to be available, for instance in a Knowledge
Graph (KG). Our proposed system starts by narrowing down the possible user intents and then
attempts to resolve the slots for each of the intents, verifying solutions by re-prompting the LLM
in a context-sensitive manner. This explicitly means that we avoid using the LLM to plan but
rather provide a plan in the form of a domain-specific grammar to identify the correct intent.
To avoid using a LLM to generate the final output, which might again introduce hallucinations
or incorrect facts, we propose to link a SPARQL-Query [17] to each intent that can be executed
once all slots are filled. The result of this query can then be presented in a structured manner
(e.g. in a table), ensuring factual correct outputs of the proposed system.

3.1. Modeling Technical Service in the Engineering Domain

We elaborate our approach by providing a small example model of the technical service in the
engineering domain, comprising all relevant concepts: components , function , facts
and activities as shown in figure 1. This domain is of particular interest as the main
challenge in the technical service is to quickly provided factual correct support to the customer
in order to resolve technical problems with a product. We illustrate the introduced concepts by
a simple example of a lamp and the technical service of this lamp, respectively.

3.1.1. Component

First, we define a component as a distinct, identifiable part or element of a larger system
or machine. Additionally, a component often consists of various sub-components (referred
to as child-nodes) and is part of a larger assembly or system (referred to as the parent-node).
For example, the base of a lamp could be a component, with the lamp itself being the parent-
component of the base. The wireless charger and the weight are two child components of the
base.

3.1.2. Functions

A function of a component describes the intended role or purpose of the component within
the larger system or machine. In the case of a lamp, for instance, this could be to provide light
for the room or to charge the phone.

3.1.3. Facts

Facts are specific pieces of information about the component. These details provide essential
data that describe various attributes and characteristics of the component. Examples of facts
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Figure 1: Model of the technical service in the engineering domain. Components have functions ,
facts and activities attached to them. Each possible user-intent is connected to the relevant
conepts.

include the weight of the component, the brightness of the bulb or output power of the wireless
charging pad.

3.1.4. Activities

An activity encompasses all the actions a user can perform with the component and are
grouped in six different categories:
Commissioning covers everything that must be done before the component is used for the first

time. It includes initial setup, calibration, and any preliminary checks required to ensure
the component is ready for operation. For a lamp, this might involve the assembly of the
component and its connection to the power source.

Operation describes detailed instructions on the proper usage techniques, operating conditions,
and any specific procedures to follow to ensure efficient and safe operation. Typical operation
activities include turning the lamp on and adjusting the brightness.

Diagnostics involves identifying and troubleshooting faults within the component, including
methods for detecting issues, tools required for diagnostics, and procedures to follow for
accurate fault identification. For instance, checking if the lamp fails to turn on due to a blown
fuse or a faulty bulb.

Repair outlines the steps necessary to repair a defective component. It includes detailed repair



procedures, tools, and parts required. One common repair activity is changing the bulb of a
lamp.

Maintenance focuses on the preventive measures needed to keep the component in good work-
ing condition. It includes regular maintenance tasks, schedules, and instructions on how
to perform upkeep activities to prevent breakdowns and extend the component’s lifespan.
Regularly cleaning the lamp and ensuring the connections are secure are key maintenance
tasks.

Disposal describes how to properly dispose of the component when it is no longer usable. It
includes guidelines for environmentally friendly disposal, regulatory compliance, and any
special handling required for hazardous materials. Disposing of the lamp at a recycling center
that handles electronic waste is an example of proper disposal.

In addition to these categories, several important aspects enhance the definition and execution of
activities. An activity can have a warning attached, alerting users to potential hazards or safety
precautions that need to be taken. Activities may also have conditions attached, indicating
that certain activities can only be performed under specific circumstances or environmental
conditions.

Typically, an activity consists of multiple steps that must be performed in a specific order to
ensure proper execution and achieve the desired outcome. Furthermore, some activities may
optionally require additional parts or tools to be completed successfully.

3.2. User Intents for Technical Service

Based on this abstract view of the technical service domain, it is possible to define and categorise
various different user intents , where one intent can possibly consist of multiple sub-
intents. For instance, a user may want to know which component has a given function and
subsequently how this component can be repaired. In this scenario, Repair by function
could be considered the primary intent, with Repair component acting as a potential sub-
intent. This hierarchical structure of intents and sub-intents facilitates the organisation and
effective addressing of complex queries, ensuring that each aspect of the user’s question is
comprehensively answered.
Each intent may have one or more slots, which are entities or aggregations of entities that
are necessary to answer the query and provide essential context for generating accurate and
relevant responses. For instance, when a user inquires about how to repair a specific component,
one slot could be identifying the component in question.

3.2.1. Finding the correct User Intents

In our proposed model, each concept is associated with multiple intents, with the potential
for one intent to be assigned to multiple concepts simultaneously, reflecting the multifaceted
nature of user inquiries in the technical service. For example, as shown in figure 1, the intent
Find location of is only assigned to the Location -Concept. In contrast, the intent
Repair by function , was assigned to both Repair and Function . For a given user

input, our proposed algorithm initially narrows down all possible intents by traversing down the
tree. It is hereby important to note that an intent can be found via various branches, reducing



the risk of excluding the correct intent due to one classification error. Subsequently, for each
remaining intent, the algorithm attempts to fill the slots using the provided context (see §3.2.2).
In the event that no intent has all slots filled, the standard RAG approach is employed as a
fallback. When multiple intents have been successfully filled, the LLM can be prompted again
to ascertain which of the intents is correct, or the user can be prompted to select the desired
intent.

3.2.2. Filling Intent Slots

The approach leverages the intent to perform context-sensitive NER. By incorporating context
from the intent into the prompt, the NER is tailored to the specific context. For instance, given
the intent Repair by Function, the model can be prompted to extract only the exact function
the user desires to repair, rather than extracting all functions mentioned within the text. As
the entities extracted by the LLM might not match the graph labels, we propose generating
embeddings for graph entities and for the model output. By comparing these embeddings, the
closest matches can be found and used to re-prompt the model to output the correct label as
specified in the graph. This process avoids adding numerous concepts to the model’s context
and ensures alignment with the graph database.

4. Promises

The approach detailed in this work promises advancements for both - academics and industry.
In the academic context, the following research questions are of particular interest:

• Comparing context-specific NER with traditional NER based on Large Language Models
(LLMs).

• Evaluating a domain-specific approach for integrating structured knowledge into RAG
architectures.

• Extending the traditional NER approach to include a dialog mechanism aimed at satisfying
the user’s information needs.

• Comparing methodologies for ensuring the security of the output information.

For the industry, a framework can be developed that allows the integration of potentially exist-
ing structured information within the company into the context of RAG, without relinquishing
complete control over its correctness. This framework can be easily extended to other domains,
as incorporating a new domain would simply require adding the necessary intents. Beyond
question answering, the framework’s intent classification could also be used to classify docu-
ments of any kind, improving the retrieval step in RAG by pre-classifying documents by intent,
classifying the query, and adding only documents with matching intents to the context. This
enables applications to reliably satisfy information needs expressed in natural language.
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A. Preliminary Case Study: denkLampe - Graph

In this chapter we will introduce the denkLampe, a lamp that was modeled in the previously
defined scheme. After that, we will provide a minimal grammar to resolve intents on this
domain and show one sample trail.

Lamp

Height: 0.69 m
Fact

Base

Stem

Shade

Weight

Weight: 4.20 kg
FactKeep Lamp Stable

Function

Wireless Charger Charge phone
Function

Switch Toggle Lamp
Activity

Joint

Reflect light of the Bulb
Function

Bulb

Light up the Room
Function

Change Bulb
Activity

Figure 2: Simplified Lamp-Model. The lamp consists of multiple components : the base, stem and a
shade which each have sub-components attached to. Facts , like the height of the lamp, are colored
blue, functions , like charging the phone, are colored orange and activities like replacing the
bulb are colored green.

A.1. DenkLampe

As shown in figure 2, the denkLampe consists of a base, stem and shade. In this example, the
base of the lamp consists of a weight which keeps the lamp stable as well as a wireless charger.
The stem of the lamp has a switch to toggle the lamp as well as the joint as sub-components.
Lastly, the bulb of the lamp is the only child-node of the shade and has the function of lighting
up the room.

A.2. Grammar

In the first step, our grammar decides if the user question revolves around a function, fact or
activity. This could for example be done by prompting a LLM to decide for each concept, if it is
relevant for the given user query or not. One possible way to do this could be to ask the model
simple yes-no questions, demonstrated in figure 3. After executing a similar query for the facts



Prompt

You are denkender, a helpful assistant that helps determining the intent of a user. It is very
important that you do not answer the question of the user directly, but instead you determine
if the user wants to know something related to the function of a component. A function of a
component is always something the component does.
For example:

If the user asks "How heavy is the lamp?", your answer should be "No"
If the user asks "What component lights up the room?", your answer should be "Yes"

Remember to only answer with "Yes" or "No" instead of answering the question of the user.

Figure 3: Sample prompt for a LLM to determine if the concept function is relevant for a given query.

and activities, the algorithm now explores all relevant branches of the tree. After that, we can
further narrow down the exact category of fact or activity using similar prompting. Once we
are at a leaf-node, we can prompt the model for each remaining intent, if this is the correct
intent for the user query. For each intent selected by this procedure, we attempt to fill out the
slots as described below. The key-change to existing work in this field is that we do not use the
model for planning but only to select the correct path according to a pre-defined grammar.

A.3. Filling Slots

Given an intent selected to be resolved by our grammar, our system then attempts to fill all slots
for this intent. For example, for the user query How do I change the thing that lights
up the room, only the slot Function of the component that needs to be repaired
needs to be filled, given that our system correctly identified the intent Repair by function .
A possible query to fill this slot is shown below:

A.4. Demo Trail

Lastly, we will provide a short demo-trail on how our proposed approach could resolve the user
query The lamp does not light up, how can I fix that?. First, our system needs
to decide if a function, fact and activity are relevant. In this case, the function is relevant as the
user is asking for the function Lighting up the room . There is no fact relevant for this
function. However, an activity is relevant for this query as the user wants to do something with
the lamp, he wants to repair it which is an activity. The result of this first step is illustrated in
figure 5. Next, the algorithm has to narrow down the specific kind of activity. In this case, the
user wants to repair something, so Repair is the only remaining activity, shown in figure 6.
In this case, only the two intents Repair by function and Repair component remain.
As the algorithm already determined that a function is relevant for the given user intent, it can
discard the intent Repair component as it is not attached to a function. Alternatively, the
algorithm could prompt a LLM to determine which of the remaining intents, of which all slots



Prompt

You are denkender, a helpful assistant that helps performing NER for user input. It is very
important that you do not answer the question of the user directly, but instead you extract the
function of the component the user wants to repair.
For example:

If the user asks "I want to repair the thing that reflects the light of the bulb",
your answer should be "Reflect light of the bulb"

If the user asks "How do i replace the component responsible for charging my phone",
your answer should be "Charge phone"

Remember to only answer with the name of the function of the component the user wants to
repair.

Figure 4: Sample prompt for a LLM to extract the relevant function from a given query.

Component

Q: The lamp does not light up,
how can i fix that?

Fact
Fact

Mechanics
Fact

Hydraulics
Fact

Location
Fact

Activity
Activity

Commissioning
Activity

Operation
Activity

Diagnostics
Activity

Repair
Activity

Maintenance
Activity

Disposal
Activity

Function
Function

Repair component
Intent

Repair by function
Intent

Pressure required for function
Intent

Find location of
Intent

What it
does

Exact Fact

H
um

an
interaction

Figure 5: Demo-Trail Step 1: Only the concepts function and activity are relevant for the given
user query.

can be filled, is correct. After filling all slots as shown in §A.3, the answer of the SPARQL-Query
attached to the intent can be presented to the user.



Component
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Figure 6: Demo-Trail Step 2: Repair is the only relevant activity. Only two possible intents remain.
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