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Abstract
Graph convolutions have gained popularity due to their ability to efficiently operate on data with an irregular
geometric structure. However, graph convolutions cause over-smoothing, which refers to representations
becoming more similar with increased depth. However, many different definitions and intuitions currently
coexist, leading to research efforts focusing on incompatible directions. This paper attempts to align these
directions by showing that over-smoothing is merely a special case of power iteration. This greatly simplifies
the existing theory on over-smoothing, making it more accessible. Based on the theory, we provide a novel
comprehensive definition of rank collapse as a generalized form of over-smoothing and introduce the rank-one
distance as a corresponding metric. Our empirical evaluation of 14 commonly used methods shows that more
models than were previously known suffer from this issue.
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1. Introduction

When operating with message-passing neural networks on graph-structured data, over-smoothing
describes a phenomenon in which node representations become more similar when the number of
convolutional layers increases. Many research efforts provide theoretical insights on over-smoothing
and methods to mitigate its effects [1, 2, 3, 4, 5, 6, 7]. However, due to the multitude of different theoretical
insights and their complexity, different research efforts often use distinct definitions for over-smoothing,
which are partly incompatible. In particular, some works study normalized representations [8, 9, 10]
while others consider unnormalized representations [11, 12, 13]. Some define over-smoothing as the
convergence to a constant state [5, 7, 11, 13, 12], others claim different limit distributions depending on
the spectrum of the aggregation function [14, 15, 16, 17, 8, 9, 10].

To combine these strands, we show that the theory behind over-smoothing can be greatly simplified
and reduced by connecting it to the classical power iteration method [18, 19, 20]. While our resulting
insights are not novel, our novel proofs aim to make the theory more accessible to a broader part of
the community. We first recap power iteration with its in-depth proof. We show that most graph
convolutions represent a particular case for which the dominant eigenvector is a Kronecker product. Its
properties lead to over-smoothing, for which we provide a novel theoretically founded definition.

2. Preliminaries

Notation Let 𝐺 = (𝒱, ℰ) be a graph consisting of a node set 𝒱 = {𝑣1, . . . , 𝑣𝑛} and an edge set ℰ .
The matrix representations of 𝐺 is given by its adjacency matrix A ∈ {0, 1}𝑛×𝑛, for which A𝑖𝑗 = 1
only if an edge between nodes 𝑣𝑖 and 𝑣𝑗 exists. For a given node 𝑣𝑖, the set of neighboring nodes is
given by 𝒩𝑖 = {𝑣𝑗 | (𝑗, 𝑖) ∈ ℰ}. The node degree is given by 𝑑𝑖𝑖 = |𝒩𝑖| and the corresponding degree
matrix D ∈ N𝑛×𝑛 with the node degrees along its diagonal. The eigenvalues of a matrix M are denoted
by 𝜆M

1 , . . . , 𝜆M
𝑛 and sorted with decreasing magnitude. The vectorize operation vec(M) is defined as

stacking the columns of M into a single vector.
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Graph neural networks Given a graph 𝐺 and a 𝑑-dimensional node signal X ∈ R𝑛×𝑑, we want
to obtain expressive node embeddings capturing information given by both the data structure and
the signals. These embeddings are utilized in downstream tasks like node classification and graph
classification. Most graph convolutions apply a node mixing function Ã ∈ R𝑛×𝑛 that represents the
graph structure and its edge weights, and a feature transformation W ∈ R𝑑×𝑑. In matrix notation,
these can be expressed as iterative transformations of the form

X(𝑘+1) = ÃX(𝑘)W(𝑘) , (1)

Popular instantiations covered by this notation include the graph convolutional network (GCN) [21],
the graph isomorphism network (GIN) [22], and the graph attention network (GAT) [23].

Over-smoothing in GNNs Over-smoothing describes a phenomenon in which the node representa-
tions become excessively similar as the number of layers 𝑘 increases. As many definitions and intuitions
for over-smoothing coexist and in some cases contradict each other, we want to familiarize the reader
with the different studies.

Li et al. [14] has shown that the normalized adjacency matrix employed by the GCN performs a special
form of Laplacian smoothing, leading to over-smoothing when many iterations are performed.However,
their study did not consider the role of the feature transformation. Oono and Suzuki [16] studied the
distance of X(𝑘) to a subspace M that is spanned by the dominating eigenvector v1 across all columns.
They bound this distance using the second largest eigenvalue 𝜆Ã

2 and the largest singular value 𝜎W
1

of W. Intuitively, each aggregation step A reduces this distance, while W can increase the distance
arbitrarily. Thus, they consequently claim potential over-separation of node representations when
𝜎W
1 > 1

𝜆A
2

. [15] introduced the Dirichlet energy

𝐸(X) = tr(X𝑇ΔX) =
1

2

∑︁
(𝑖,𝑗)∈ℰ

⃦⃦⃦ x𝑖√
𝑑𝑖

− x𝑗√︀
𝑑𝑗

⃦⃦⃦2
2

(2)

as an efficient and interpretable metric to quantify over-smoothing. Their study considers the GCN with
aggregation matrix Ã = D−1/2AD−1/2 and the symmetrically normalized graph Laplacian Δ = I−Ã,
as the dominating eigenvector corresponds to its nullspace. A low energy value corresponds to similar
neighboring node states. Similarly to Oono and Suzuki [16], they provided the bound

𝐸(AXW) ≤
(︀
𝜆A
2

)︀2 (︀
𝜎W
1

)︀2
𝐸(X) (3)

for each convolution and prove an exponential convergence to zero for the GCN. As their proof again
only holds in case 𝜎W

1 ≤ 1
𝜆A
2

, they similarly claim potential over-separation. Zhou et al. [17] provide a
lower bound on the energy to show that the Dirichlet energy can go to infinite.

Another branch of recent research [7, 5, 13, 24] defines over-smoothing as the exponential convergence
of X(𝑘) to a state with a constant value in each column. This contradicts the aforementioned studies as
the dominant eigenvector of the aggregation matrix [16, 15, 17] is not always a constant vector, e.g., for
the GCN [21].

These inconsistencies were recently clarified as the necessity to consider the normalized state was
shown [8, 25, 9]. When not considering the normalized state, the norm of X(𝑘) going to zero can be
wrongly interpreted as a convergence to a constant state [8, 9]. In the other direction, even when X(𝑘)

is dominated by the dominant eigenvector, the Dirichlet energy of the unnormalized state wrongly
indicates over-separation.

As the theory and the corresponding proofs are lengthy and complex, several recent studies still
claim over-smoothing as convergence to a constant state or do not consider the normalized state. This
work greatly simplifies the theory behind over-smoothing to make the theoretical backgrounds more
accessible.



3. Power Iteration

As the proof for over-smoothing of graph convolutions will be a special case, we first provide the detailed
proof for the well-known power iteration [18, 19, 20]. Power iteration refers to the process where a
vector, when repeatedly multiplied by a matrix, gets dominated by an eigenvector of the matrix that
corresponds to the eigenvalue with the largest magnitude. The proof we provide mostly follows [26], but
similar proofs are available in many textbooks. For any square matrix M, its eigenvalues are denoted
by 𝜆M

1 , . . . , 𝜆M
𝑛 and are sorted descending by their magnitude, i.e., |𝜆M

𝑖 | ≥ |𝜆M
𝑖+1|.

Proposition 3.1. (Power Iteration [26]) Let S ∈ R𝑝×𝑝 be a matrix with |𝜆S
1 | > |𝜆S

2 | and vS
1 ∈ R𝑝 be an

eigenvector corresponding to 𝜆S
1 . Further, let x0 ∈ R𝑞 be a vector that has a non-zero component 𝑐1 in

direction vS
1 . Then,

S𝑘x0

‖S𝑘x0‖
= 𝛽𝑘v

S
1 + r𝑘 (4)

for some r𝑘 ∈ R𝑝 with lim𝑘→∞ ‖r𝑘‖ = 0 and 𝛽𝑘 = 𝑐1
|𝑐1|

(︁
𝜆S
1

|𝜆S
1 |

)︁𝑘
1

‖vS
1 ‖

∈ R.

Proof. Let S = VJV−1 be its Jordan decomposition, where J ∈ C𝑝×𝑝 is a block diagonal matrix
containing the eigenvalues on its diagonal and V ∈ C𝑝×𝑝 contains the generalized eigenvectors
as columns. As the generalized eigenvectors form a basis of R𝑝, x0 can be decomposed as x0 =
𝑐1v

S
1 + · · ·+ 𝑐𝑝v

S
𝑝 into a linear combination. This allows the following equalities:

S𝑘x0

‖S𝑘x0‖
=

(VJV−1)𝑘(𝑐1v
S
1 + . . . 𝑐𝑛v

S
𝑛)

‖(VJV−1)𝑘(𝑐1vS
1 + . . . 𝑐𝑛vS

𝑛)‖

=
VJ𝑘(𝑐1e1 + . . . 𝑐𝑛e𝑛)

‖VJ𝑘(𝑐1e1 + . . . 𝑐𝑛e𝑛)‖

=
𝑐1
|𝑐1|

(︂
𝜆S
1

|𝜆S
1 |

)︂𝑘 V( 1
𝜆S
1
J)𝑘 1

𝑐1
(𝑐1e1 + . . . 𝑐𝑛e𝑛)

‖V( 1
𝜆S
1
J)𝑘 1

𝑐1
(𝑐1e1 + . . . 𝑐𝑛e𝑛)‖

(5)

The second equation uses the fact V−1vS
𝑘 = e𝑘 , i.e., the natural basis vector pointing in direction 𝑘. As

J is normalized by its unique largest entry 𝜆S
1 , it converges to

lim
𝑘→∞

(︂
1

𝜆S
1

J

)︂𝑘

=

⎡⎢⎢⎢⎣
1

0
. . .

0

⎤⎥⎥⎥⎦ . (6)

Equation 5 then simplifies to

𝑐1
|𝑐1|

(︂
𝜆1

|𝜆1|

)︂𝑘 V( 1
𝜆1
J)𝑘 1

𝑐1
(𝑐1e1 + . . . 𝑐𝑛e𝑛)

‖V( 1
𝜆1
J)𝑘 1

𝑐1
(𝑐1e1 + . . . 𝑐𝑛e𝑛)‖

=
𝑐1
|𝑐1|

(︂
𝜆S
1

|𝜆S
1 |

)︂𝑘
vS
1

‖vS
1 ‖

+ r𝑘 (7)

with lim𝑘→∞ ‖r𝑘‖ = 0. It converges to vS
1

‖vS
1 ‖

iff 𝜆S
1 > 0. ⊓⊔

Note that |𝜆S
1 | > |𝜆S

2 | holds for almost every matrix S with respect to the Lebesgue measure [27].

4. Graph Convolutions as Power Iteration

We now show that this proof can be applied to all graph convolutions of the form given by Eq. 1. We
express these graph convolutions in vector notation [28]

vec(AXW) = (W𝑇 ⊗A)vec(X) = Sx0 (8)



using the Kronecker product ⊗ that is defined as A⊗B =

⎡⎢⎣𝑎11B . . . 𝑎1𝑛B
...

. . .
...

𝑎𝑚1B . . . 𝑎𝑚𝑛B

⎤⎥⎦. This formulation is

commonly used to study over-smoothing [8, 10, 9] and other properties of graph convolutions [29, 6, 30].
The Kronecker product has a key spectral property affecting power iteration: All eigenvectors vS

𝑖𝑗 =

v
(WT)
𝑖 ⊗vA

𝑗 of W𝑇 ⊗A are Kronecker products of the eigenvectors of A and W𝑇 with corresponding
eigenvalue 𝜆A

𝑖 𝜆W
𝑗 [28]. This lets us state the reason behind over-smoothing in a clearer way than in

previous works by substituting vS
1 :

Proposition 4.1. (Power Iteration with a Kronecker Product) Let S = W ⊗A ∈ R(𝑛·𝑑)×(𝑛·𝑑) for any
W ∈ R𝑑×𝑑 and A ∈ R𝑑×𝑑 with |𝜆S

1 | > |𝜆S
2 |. Let vA

1 ,vW
1 be two eigenvectors corresponding to 𝜆A

1

and 𝜆W
1 , respectively. Further, let x0 ∈ R𝑛·𝑑 be a vector that has a non-zero component 𝑐1 in direction

vS
1 = vW

1 ⊗ vA
1 . Then,

(W ⊗A)𝑘x0

‖(W ⊗A)𝑘x0‖
= 𝛽𝑘 · vW

1 ⊗ vA
1 + r𝑘 (9)

for some r𝑘 ∈ R𝑛·𝑑 with lim𝑘→∞ ‖r𝑘‖ = 0 and 𝛽𝑘 = 𝑐1
|𝑐1|

(︂
𝜆A1 𝜆W1
|𝜆A1 𝜆W1 |

)︂𝑘

‖vW
1 ⊗vA

1 ‖ ∈ R.

Proof. Given that |𝜆S
1 | > |𝜆S

2 |, and 𝜆S
𝑖·𝑗 = 𝜆A

𝑖 · 𝜆W
𝑗 for all 0 < 𝑖 < 𝑛 and 0 < 𝑗 < 𝑑, we have

|𝜆A
1 | > |𝜆A

2 | and |𝜆W
1 | > |𝜆W

2 |. The corresponding eigenvector vS
1 = vA

1 ⊗ vW
1 is the Kronecker

product of the corresponding eigenvectors of A and W. Substituting these in Proposition 3.1 results in
our Proposition 4.1. ⊓⊔

Extending Proposition 4.1 for any W and possibly repeated 𝜆W
1 is similar, as all generalized eigen-

vectors of W ⊗A corresponding to 𝜆S
1 are of the form u⊗ vA

1 for different u. To simplify this work,
we provide this proof as Proposition A.1 in Appendix A. The implications of Proposition 4.1 become
clearer when looking into its matrix form:

Remark 4.2. (Power Iteration with a Kronecker Product in Matrix Notation) Stating Proposition 4.1 in
matrix notation leads to

A𝑘XW𝑘

‖A𝑘XW𝑘‖
= 𝛽𝑘v

A
1

(︀
vW
1

)︀𝑇
+R𝑘 (10)

for vec(X) = x0 and some R𝑘 with lim𝑘→∞ ‖R𝑘‖ = 0 and 𝛽𝑘 = 𝑐1
|𝑐1|

(︂
𝜆A1 𝜆W1
|𝜆A1 𝜆W1 |

)︂𝑘

‖vW
1 ⊗vA

1 ‖ ∈ R.

Any graph convolution of this form amplifies the same signal across all feature columns, and the
state gets closer to a rank one matrix, with each column becoming a multiple of vA

1 . This phenomenon
was termed rank collapse, but a definition is still missing [9]. A comprehensive definition must consider
the normalized representations and be independent of one specific vector. We introduce the following
definition:

Definition 4.1. (Rank Collapse) A sequence of matrices X(1), . . . ,X(𝑘) ∈ R𝑛×𝑑 is said to suffer from
rank collapse if there exists a sequence of rank-one matrices Y(1), . . . ,Y(𝑘) ∈ R𝑛×𝑑 such that

lim
𝑘→∞

⃦⃦⃦⃦
⃦ X(𝑘)

‖X(𝑘)‖
−Y(𝑘)

⃦⃦⃦⃦
⃦ = 0 (11)

It is commonly referred to as over-smoothing as they only consider stochastic aggregation functions
or symmetrically normalized adjacency matrices. Their eigenvector vA

1 is a smooth vector for typical
choices of A, e.g., it is the vector of all ones vA

1 = 1 for the (weighted) mean aggregation, and
vA
1 = D

1
2 1 for the symmetrically normalized adjacency matrix [31]. We thus define over-smoothing as

a special case of rank collapse:



Definition 4.2. (Over-Smoothing) A sequence of matrices X(1), . . . ,X(𝑘) ∈ R𝑛×𝑑 is said to suffer from
over-smoothing if it suffers from rank collapse and the rank-one matrices are of the form Y(𝑙) = 1c𝑇(𝑙)

or Y = D
1
21c𝑇(𝑙) for any c(𝑙) ∈ R𝑑.

To quantify the degree of over-smoothing, a frequently used metric is the Dirichlet energy [15]

𝐸

(︂
X

‖X‖

)︂
= tr

(︂
X

‖X‖
Δ

X

‖X‖

)︂
, (12)

with Δ = D−A or Δ = I𝑛 −D−1/2AD−1/2, depending on case of over-smoothing. The Dirichlet
energy converges to zero for methods utilizing the corresponding aggregation function as v1 is in the
nullspace of Δ, i.e., Δv1 = 0. However, this requires different Δ for different aggregation functions,
as vA

1 may be different.
In order to quantify the more general phenomenon of rank collapse, we need to find a suitable

sequence of rank-one matrices. The singular vectors corresponding to the largest singular value give the
closest rank-one approximation of a given matrix. However, finding singular vectors is computationally
expensive. As we are mainly interested in whether X converges to zero and not the exact value, we
will instead utilize a row and column vector of the given X. Any row and column will be sufficient if
X is close to a rank one matrix. We consider the row and column vectors with the largest norm for
numerical stability. This leads to our newly proposed rank-one distance metric:

Definition 4.3. (Rank-one Distance (ROD)) Let X ∈ R𝑝×𝑞 be any matrix. We define the row with
the largest norm as v = max𝑖 ‖x𝑖‖ ∈ R𝑝 and the column index corresponding the largest norm as
𝑗 = argmax𝑖 ‖x:,𝑖‖ ∈ R𝑞 . To account for the correct signs, we utilize the 𝑗-th column vector u = x:,𝑗

if 𝑣𝑗 > 0 or its negated version u = −x:,𝑗 otherwise. The rank-one distance of X is then defined as

ROD(X) =

⃦⃦⃦⃦
X

‖X‖
− uv𝑇

‖uv𝑇 ‖

⃦⃦⃦⃦
. (13)

As a generalization of over-smoothing, a Dirichlet energy of zero implies a ROD of zero, i.e.,
𝐸(X/‖X‖) = 0 ⇒ ROD(X) = 0. Similarly to Roth and Liebig [9], our theory also explains how to
prevent over-smoothing and rank collapse. It needs to be ensured that the graph convolution is not a
Kronecker product, i.e., a single aggregation and transformation matrix. One direction is to operate on
multiple computational graphs A1, . . . ,A𝑙 with distinct feature transformations W1, . . . ,W𝑙:

Svec(X) = (W1 ⊗A1 + · · ·+W𝑙 ⊗A𝑙)vec(X)

= vec(A1XW𝑇
1 + · · ·+A𝑙XW𝑇

𝑙 ) .
(14)

As the eigenvectors of sums of Kronecker products can be linearly independent across the corresponding
columns, different signals can get amplified for each feature column.

5. Experimental Validation

Given our novel definition and corresponding metric, we evaluate various well-established graph
convolutions in terms of their ability to avoid rank collapse. Our implementation based on PyTorchGeo-
metric [32] is available online 1.

Methods As base message-passing methods, we evaluate the dynamics of the graph convolutional
network [21] and the graph attention network (GAT) [23]. These are known to suffer from over-
smoothing, so they also suffer rank collapse. The other methods we consider are not generally known
to cause over-smoothing or are specifically designed to prevent it. While previous theory shows

1https://github.com/roth-andreas/simplifying-over-smoothing

https://github.com/roth-andreas/simplifying-over-smoothing


Figure 1: Change in Dirichlet energy using the unnormalized graph Laplacian when increasing the
number of layers for randomly initialized models. Mean values over 50 random seeds.

Figure 2: Change in Dirichlet energy using the symmetrically normalized graph Laplacian when
increasing the number of layers for randomly initialized models. Mean values over 50 random seeds.

that negative edge weights and similarly residual connections can avoid over-smoothing [33, 34, 8],
the connection to power iteration implies that these cannot prevent rank collapse. We evaluate the
combination of the GCN and a residual connection (ResGCN), which adds the previous state to the
output of each convolution. Similarly, we evaluate the SAGE convolution [35], which additionally
applies a linear transformation to the previous state. We also consider a commonly employed method
that allows negative attention weights, namely the generalized GCN (GGCN) [34]. Another direction
that aims to prevent over-smoothing is based on combining the output of each iteration with the initial
state, referred to as an initial residual connection [36] or a restart term [6]. We evaluate the GCNII [36].
While previous work argued that this prevents over-smoothing for the unnormalized state. Given the
critical importance of considering the normalized state, we want to evaluate whether this property still
holds. As the magnitude of the representations may grow in each iteration, the constant influence of the
initial state may become negligible. Towards this end, we consider two versions: one with the regular
parameter initialization (GCNII) and one for which all parameters are scaled by a factor of two (GCNII
2x). As an alternative approach, we also consider the personalized page rank graph neural network
(PPRGNN) [6], a formulation that provably converges to a steady state with increased depth. Gating
mechanisms allow a node to retain its representation by limiting the mixing with neighboring states
using learnable gating functions. Here, we evaluate the gated graph neural network (GatedGNN) [37].
Normalization layers were also shown to prevent over-smoothing. Here, we evaluate PairNorm [2]



Figure 3: Change of the rank-one distance when increasing the number of layers for randomly initialized
models. Mean values over 50 random seeds.

(GCN+PairNorm) and BatchNorm [38] (GCN+BatchNorm), combined with the GCN by their ability to
mitigate rank collapse. The graph isomorphism network [22] applies a multi-layer non-linear feature
transformation to each state. While this was designed to allow for injective mappings of multisets to
achieve maximal expressivity, this should allow resulting representations to be linearly independent.
We evaluate a version using a multi-layer perceptron (MLP) with two layers (GIN 2 layers) and a version
using an MLP with three layers (GIN 3 layers). As global methods, we consider the unified message
passaging model (UniMP) [39] and the general, powerful, scalable (GPS) graph transformer [40] as two
graph transformer variations.

Setting We track the rank-one distance for all methods on the KarateClub dataset [41], which is
a small and undirected graph consisting of 34 nodes and 156 edges. We initialize each node with
randomly assigned features following a normal distribution. For each method and for each iteration,
the corresponding graph convolution followed by a ReLU-activation is applied. The rank-one distance
is computed after each iteration. For direct comparison, we also compute the Dirichlet energy based on
the unnormalized graph Laplacian Δ = D−A and the symmetrically normalized graph Laplacian
Δ = I − D−1/2AD−1/2. We repeat this process for 96 iterations as several methods become too
unstable at further depth, i.e., feature magnitudes explode or diminish. Runs for each method are
repeated for 50 random seeds. Mean values are reported.

Results The changes in the Dirichlet energy using the unnormalized graph Laplacian are shown
in Figure 1. This Dirichlet energy converges to zero only for GAT, SAGE, and UniMP, which all
use weighted mean aggregation. In Figure 2, we visualize the changes in Dirichlet energy using the
symmetrically normalized graph Laplacian. For GCN, GCNII (2x), and ResGCN, this metric converges
to zero as these methods utilize the symmetrically normalized adjacency matrix for aggregation. In
Figure 3, we present the rank-one distance (ROD) for all methods. The results confirm that ROD
converges to zero for all methods for which the Dirichlet energy with either graph Laplacian converges
to zero. In addition, we find GIN (2 layers) and GGCN to suffer from rank collapse. While these methods
use different aggregation functions, ROD captures the underlying issue of rank collapse. Different
rates of convergence are notable, particularly between methods using the mean aggregation (GAT,
SAGE, UniMP) and methods using other aggregation functions (GCN, GGCN, GCNII, ResGCN, and
GIN). However, all these methods cause the rank to converge to one across all 50 random initializations.
Methods for which we do not observe rank collapse use normalization techniques (GCN+PairNorm and
GCN+BatchNorm), prevent unlimited depth (PPRGNN, GCNII, and GatedGNN), and use non-linear
feature transformations (GPS and GIN (3-layer)).



6. Conclusion

We have shown that over-smoothing is a special case of power iteration, with the dominant eigenvector
of graph convolutions W ⊗A taking the form vW

1 ⊗ vA
1 . As given in power iteration, normalization

is required, and the limit distribution is not always the constant vector, as it depends on the dominant
eigenvector of A. Based on our novel definition of rank collapse and the corresponding rank-one
distance, we identified several methods suffering from rank collapse that were previously considered
to prevent over-smoothing. We empirically found three general directions to prevent rank collapse:
Normalization layers, limiting the effective depth of a model using a restart term or a gating mechanism,
and complex non-linear feature transformations. These are promising avenues for further consideration.
In addition, to solve rank collapse in the message-passing steps itself, the theory indicates that it needs
to be ensured that the dominant eigenvector vS

1 is not a simple Kronecker product so that it can amplify
different signals across feature columns.
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A. Appendix

Proposition A.1. (Power Iteration with a Kronecker Product) Let S = W ⊗A for W ∈ R𝑑×𝑑 and
A ∈ R𝑛×𝑛 with |𝜆A

1 | > |𝜆A
2 |. Let vA

1 be an eigenvector corresponding to 𝜆A
1 . Further, let x0 ∈ R𝑛·𝑑 be

any vector that has a non-zero component in the direction of a generalized eigenvector vS
1 corresponding

to 𝜆S
1 . Then,

(W ⊗A)𝑘x0

‖(W ⊗A)𝑘x0‖
= 𝛽𝑘 · u⊗ vA

1 + r𝑘 (15)

for some r𝑘 ∈ R𝑛·𝑑 with lim𝑘→∞ ‖r𝑘‖ = 0, bounded 𝛽𝑘, and some u ∈ R𝑑.

Proof. This proof is similar to the proof of Proposition 3.1. However, ±𝜆S
1 may occur multiple times,

so there can be multiple Jordan blocks corresponding to ±𝜆S
1 , and they can have a size larger than

one. Let 𝑝 be the size of the largest Jordan block corresponding to 𝜆S
1 . Then, J𝑘 will be dominated by

𝑞𝑘 =
(︀

𝑘
𝑝−1

)︀
𝜆𝑆𝑘−(𝑝−1)

1 :

lim
𝑘→∞

(︂
1

𝑞𝑘
J

)︂𝑘

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . 0 1
. . . 0

...
...

0 . . . 0
. . .

0 . . . 0 1
. . . 0

...
...

0 . . . 0
0

. . .
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (16)

The number of blocks containing a 1 is determined by the number of Jordan blocks corresponding
to ±𝜆S

1 with size 𝑝. Let there be 𝑖 such blocks. We further know that all corresponding generalized
eigenvectors are of the form vS

𝑖·𝑝 = vW
𝑖·𝑝 ⊗ vW

1 . For eigenvalues constructed with 𝜆A
2 it holds that

𝜆A
2 𝜆𝑖·𝑝 < 𝜆A

1 𝜆𝑖·𝑝. This lets us simplify the statement:(︂
𝑞𝑘
|𝑞𝑘|

)︂𝑘 V( 1
𝑞𝑘
J)𝑘(𝑐1e1 + . . . 𝑐𝑛e𝑛)

‖V( 1
𝑞𝑘
J)𝑘(𝑐1e1 + . . . 𝑐𝑛e𝑛)‖

=

(︂
𝑞𝑘
|𝑞𝑘|

)︂𝑘 𝑐1·𝑝v
S
1·𝑝 + · · ·+ 𝑐𝑖·𝑝v

S
𝑖·𝑝

‖𝑐1·𝑝vS
1·𝑝 + · · ·+ 𝑐𝑖·𝑝vS

𝑖·𝑝‖
+ r𝑘

=

(︂
𝑞𝑘
|𝑞𝑘|

)︂𝑘 𝑏u⊗ v1
A

‖𝑏u⊗ v1
A‖

+ r𝑘

(17)

for 𝑏 = 𝑐1·𝑝 · · · · · 𝑐𝑖·𝑝, u = v1·𝑝 + · · ·+ v𝑖·𝑝, and lim𝑘→∞ ‖r𝑘‖ = 0 which converges to v1
‖v1‖ iff 𝜆1 > 0.

Setting 𝛽𝑘 =
(︁

𝑞𝑘
|𝑞𝑘|

)︁𝑘
1

‖𝑏u⊗v1
A‖ leads to Proposition 4.1. ⊓⊔
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