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Abstract

Industrial condition monitoring based on Al is often hampered by the lack of properly labeled data.
One possible solution to this problem is to use anomaly detection algorithms. In this paper we test four
machine learning anomaly detection algorithms (DeepSVDD, GMM, KNN, ECOD) on endurance test
condition monitoring data recorded from two medium voltage circuit breakers in a long-term laboratory
experiment. The paper shows the suitability of these algorithms for the early detection of faults in a
deteriorating mechanical system. We benchmark the results against the interpretation of traditionally-
used metrics. The comparison leads to the conclusion that anomaly detection on the raw sensor data is a
preferable alternative to those metrics.

Keywords

Machine learning, anomaly detection, switchgear, circuit breakers, condition monitoring

1. Introduction

Modern life is heavily dependent on a reliable and steady supply of electrical energy. One of
the key components of the electrical grid is medium voltage (MV) switchgear [7]. Switchgear
panels are found in substations around the world and are mainly responsible for the safety of
devices connected to the grid by interrupting current flow in abnormal situations. Since only
healthy switchgears can guarantee the availability of this critical safety function, it is prudent
to monitor their condition. One condition monitoring approach is to use so-called travel curve
sensors on the circuit breakers (CBs) housed in the switchgear panels.

Condition monitoring solutions need to be automated to be deployed cost-effectively. Most
breaker monitoring solutions today use metrics and thresholds based on experience and en-
gineering domain knowledge. Often, frequent human decisions are needed to interpret the
current asset health state. In this paper we want to explore whether the use of Al, in partic-
ular anomaly detection algorithms, can improve on the state of the art of MV circuit breaker
condition monitoring.

The paper has the following structure. We start with an explanation of the problem do-
main, the sensors used, and the data available. In section 3, we survey the related work, i.e.
anomaly detection algorithms and their application to condition monitoring. We also explain
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the traditional metrics that will be used as a benchmark. In section 4, we describe our proposed
anomaly detection approach including the physical experiments conducted to obtain the data.
We compare these results to traditional metrics and end with conclusions and future work in
the section 5.

Our goal for this paper is to answer the following research question: Are anomaly detec-
tion algorithms suitable for MV breaker monitoring and how do they compare to traditional
approaches?

2. Domain Background - Breakers and Monitoring

It is beyond the scope of this paper to discuss the details of medium voltage circuit breakers
and their failure modes. However, to provide some context for the reader, we briefly explain the
technology of both the asset monitored and the sensors used for their monitoring.

2.1. MV Circuit Breakers

A CB is an electrical safety device to protect electrical circuits from damage due to overcurrent.
Its primary role is to interrupt the current flow protecting equipment and minimizing the risk
of fire. The circuit breaker is resettable after tripping, unlike a fuse, which must be replaced
after tripping.

A MV CB is capable of a very large number of opening and closing operations before the end
of its useful life. In this study, the number of operations is non-dimensionalized with respect to
a standard lifetime of MV CBs. Common ratings of MV CB are voltages of up to 36kV, currents
of 3kA and short circuit currents of up to 63kA. MV CBs are installed in MV switchgear panels
that protect our electrical gird.

2.2. Travel Curve Sensors

There are several ways to monitor the condition of CBs. A common sensor type used in CBs
are mechanical position sensors such as linear potentiometers for travel curve monitoring.
The positions sensors measure the travel curve at appropriate locations in the kinematic chain
that represents the movement of the moving electrical contact for each phase. The measured
analogue voltage signal is then sampled with a laboratory data collector (cDAQ). Due to the
high speed and acceleration a high sample rate is necessary to get a decent amount of data in
the operation time window.

In simpler terms, the travel curve represents the position (shown on the y-axis) of the moving
contact of the CB at a given point in time (x-axis). The intermediate values are traversed as
the contact “travels” between open and closed. Faults are very likely to affect the speed and
positions of the opening and closing operation. An example of an opening as well as that of a
closing travel curve will be shown and discussed in section 3.3.



3. Related Work

There are three areas of related work we need to discuss. First, we examine anomaly detection
algorithms in general and the ones we have picked for this paper in particular. Next, we discuss
related work that uses such algorithms for condition monitoring. To our knowledge, there are
almost no examples of anomaly detection algorithms applied to MV CB travel curve data but
there are some interesting papers for other equipment. Finally, we need to briefly explain the
traditional metrics we use as a baseline for our algorithms.

3.1. Anomaly Detection Algorithms

According to Ruff et al,, an anomaly is an observation that deviates from some concept of
normality. Anomaly detection algorithms use initial training data to establish this concept and
new samples are rated according to some kind of anomaly score [13]. A division into “normal”
data previously seen and some future unknown data with unclear properties is quite suitable
for condition monitoring where we cannot anticipate all possible failure modes.

Recent developments go towards deep models for anomaly detection. Choi et al. identify the
following categories of deep models for time series anomaly detection: Autoencoders in different
variants, Generative Adversarial Networks (GANs), Transformers, Graph Neural Networks
(GNNs), Recurrent Neural Networks (RNNs), Temporal Convolutional Networks (TCNs), and
Hierachical Temporal Memories (HTMs) [4]. Additionally, there are deep one-class classifiers
and self-supervised methods [13].

The first big group are generative models. These models typically exploit the learned com-
pression to a lower-dimensional latent space which results in some form of reconstruction
error. The error can be used as an anomaly score, because previously unseen types of data are
expected to be less easy to reconstruct than “normal” data. A good overview of GANSs suitable
for anomaly detection can be found in [5]. We did not use these models in this paper because
they need large volumes of training data that we could not provide, which resulted in terrible
performance during some superficial tests.

Self-supervised anomaly detection is a fascinating concept based on the idea of applying
transformations on “normal” data to generate anomalies. These new samples can be labeled
automatically as the type of transformation is known. Using this data, a classification algorithm
can be trained to identify the transformations. The working hypothesis is that anomalies
will be classified as one or more transformations [9]. There are similar approaches such as
contrastive learning [15]. However, these approaches require a selection and implementation of
transformations that might or might not allow good anomaly detection in the end. Also these
models have mostly been used on image or video data so far (cf. [2]).

In this paper, we examined four anomaly detection algorithms. The first is a one-class
classifier called Deep Support Vector Data Description (DeepSVDD) [14]. DeepSVDD is a deep
model that uses a neural network to map the features tightly into to a lesser-dimensional space.
Any anomaly will exhibit a high distance from the center of the hypersphere that encapsulates
the features of the training data. Since our data consists of highly correlated data points, a deep
model with dimensionality reduction seemed to be promising.

Next, we are using an algorithm derived from the K-Nearest Neighbors (KNN) classification



algorithm. Like the original algorithm, this variant determines the distance to the K nearest
neighbors. However, there are no classes, so the distances are used to compute an anomaly
score (e.g. max or mean) [12].

Third, we use Gaussian mixture models (GMMs), which are based on the assumption that
the data under observation is generated by a mixture of several Gaussian distributions. Each
distribution represents one cluster in the data. Outliers have a low probability of belonging to
any of those components (cf. [3]).

Our final model is Empirical-Cumulative-distribution-based Outlier Detection (ECOD), a
recent non-deep anomaly detection algorithm. ECOD is an unsupervised outlier detection
algorithm that identifies data points that deviate from a general data distribution. It is based
on the idea that outliers are often the "rare events" that appear in the tails of a distribution.
ECOD assumes that all features are statistically independent, which allows a non-parametric
distribution estimation in the form of an empirical cumulative distribution function [10]. While
this assumption is not true for our data, we decided to explore its suitability despite this potential
limitation.

3.2. Condition Monitoring Anomaly Detection

There are many examples of using anomaly detection algorithms to interpret condition moni-
toring data, so we can give only a few illustrative examples.

The work closest to our experiment is by Malek Mahdavi who uses autoencoders to analyze
the travel curves of low voltage CBs (as opposed to medium voltage in our case). In the
publication, autoencoders and dynamic threshold techniques are used to detect anomalies [11].
Despite the superficial similarities, both the assets under observation as well as the algorithms
are so different that a direct benchmarking is not possible.

There is one other paper that examines condition monitoring of switchgear using anomaly
detection algorithms. The paper looks at partial discharge and identifies such scenarios with
an autoencoder that reconstructs UHF sensor signals [16]. This is different from our use case
which focuses on mechanical as opposed to electrical faults.

The remaining papers focus on different assets. Some papers apply condition monitoring
anomaly detection to data from whole plants. Dix and Ganguly use various anomaly detection
algorithms to detect the failure of the sensors and valves in a system to separate oil, water, and
gas [6]. Zhang et al. use a Gaussian Process Ensemble Model to analyze power plant data to
detect anomalies. Their input is multivariate time series data [17].

Hendrickx et al. apply anomaly detection to fleet data (electrical motors), postulating that
most elements in the fleet would be normal and any fault an anomaly. The approach does not
require historical data as comparisons are made within the existing fleet. Their input is electrical
and vibration data [8]. Ahmad et al. explore the use of autoencoder-based anomaly detection
algorithms on rotating machinery data. The input data are raw vibration signals without any
feature engineering. The algorithm is compared to an alternative one based on IForest and
using handcrafted features [1]. Additionally, Zhang et al. use a probabilistic regression model
to detect anomalies in wind turbines [18].

It is interesting to note that most of these approaches do not use the algorithms the state of the
art literature identifies as suitable anomaly detection tools, with the exception of autoencoders.
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Figure 1: Traditional metrics for travel curves

For this reason, we did not try to adapt these algorithms to our problem. Furthermore, almost
all papers we found are for different types of equipment. Essentially, the problem of detecting
mechanical anomalies in medium voltage switchgear using state of the art anomaly detection
algorithms is not solved yet.

3.3. Traditional Metrics

In applications today, travel curves are analyzed via a series of metrics computed from the
curves. In this paper, we use the following metrics according to [11] as a baseline to compare
our algorithms to (also see Fig. 1):

« Total travel: The distance between the closed and open position travelled during the
opening or closing operation. It is the delta between E. and E for opening and between
Dy and Dy, during closing.

+ Time duration/period for the estimation of opening/closing speed: The time T, or t, that
passes between two characteristic points along the slope of the curve. These points are
fixed positions and are called E; and E; or D; and D, respectively.

« The distance between E.x and Ep, during opening,.

+ The distance between Dy,,x and Dy, during closing.

4. Anomaly Detection Approach

In this section we describe our experiments. We only give a high-level description of the
hardware setup as this paper is intended for an audience more interested in the software
aspects.

4.1. Experimental Setup (Hardware)

In our lab, we ran several endurance tests on CBs of type VD4. The test setup is shown in Fig.
2. During the test, the CB is frequently opened and closed to simulate its use in the field at an
accelerated pace. The last recorded travel curve is the one of the operation when the breaker
finally failed. At the time of this publication, usable lifetime test data was available for two of
the CBs, labeled CB4 and CB6.
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Figure 3: Examples of the data from the endurance test

For the data acquisition, a cDAQ HIL system was used. Its modular configurability makes it
very convenient to process various sensor and control signals simultaneously.

The system is controlled using relays, switches, and external power supplies, which, in turn,
are controlled with the cDAQ system by its digital output channels. A LabView program is
running on a measurement computer for this purpose. Measurement data is only captured
during operation time, triggered by control signals. This significantly reduces storage space
compared to continuous data acquisition. On the sensor side, the travel curve sensors described
in section 2.2 were used.

4.2. Experimental Setup (Software)

The result of the physical experiment are almost 26 GB of binary data. For each opening and
closing operation, there is a single travel curve consisting of about 11000 values that represent
the positions during the operation. The data are unlabeled but we can assume early data points
to still be healthy. Examples of the actual data are shown below (Fig. 3). Both datasets were
normalized in time and absolute value.

This means that there are four datasets available for use in this paper: CB4 open, CB4 close,
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Figure 5: Deep-dive analysis of some KNN anomalies in CB6 close

CB6 open, and CB6 close. Each dataset was divided into training data (the first several hundred
samples) and test data (the remainder). Next, four anomaly algorithms were applied: DeepSVDD,
KNN, GMM, and ECOD. Some exemplary test results can be seen in Fig. 4. The curves show
how anomaly scores develop over time. In both of these two examples, there is a trend that
shows the effect of deterioration in the breaker. The CB4 data shows a system that is unstable
with parts sliding in and out of the optimal position due to damage.

The example on the right of Fig. 4 (CB6 open) has a strong trend in its anomaly score
that is easy to see for human eyes. In Fig. 5, we explore the data for this case further. We
have highlighted two late-stage travel curves (shown in red) in comparison to the average of
early-stage travel curves (black). There is a clear change in the total travel, i.e., the breaker does
not fully close any more. This is a first piece of evidence that the anomaly detection works with
our data. However, a more elaborate evaluation strategy is needed.

4.3. Evaluation

Many papers exploring anomaly detection algorithms for condition monitoring use an unsuper-
vised or self-supervised algorithm but for the test scenario have access to fully labeled data for
an evaluation [6, 8]. For example, Dix and Ganguly use a simulator to test their algorithms [6].
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Figure 6: Normalized and smoothened anomaly scores for different algorithms

Others only evaluate behavior during clearly normal states (e.g. Zhang et al [17]).

The endurance test data in this paper is fully unlabeled. We can safely assume the first n data
points to be healthy and the last m data points to be increasingly faulty but neither n nor m are
known values. For the sake of the study, we define a relatively low n to identify a training set
and know that the last value is the strongest anomaly as it represents the failure.

Therefore, we can only do a limited analysis of algorithm quality. First, based on the assump-
tion that the data is from a deteriorating mechanical system, a good algorithm will show a clear
trend that culminates in failure. Second, it should be possible to statistically identify a threshold
that gives a warning that a failure would occur soon. The threshold should only be crossed
a few operations before failure. Warnings given too early result in unnecessary cost as still
working equipment is replaced too soon.

4.3.1. Presence of Clear Trends in Anomaly Scores.

To make the raw anomaly scores of the different algorithms easier to interpret and compare, we
have applied a filter to make the curves smoother and have normalized all results to a range
from 0 to 1. These results are plotted in Fig. 6 for both breakers and their opening and closing
operations. The comparison shows that many of the algorithms exhibit a clear trend that is
indicative of deterioration. However, there are also cases that are not suitable for condition
monitoring such as DeepSVDD applied to the closing operation of CB6, which behaves in a
completely counterintuitive way after a major peak relatively close to failure.

A subjective, visual assessment whether the curves display a clear rising trend (important for
monitoring of deterioration) yields the results shown in Table 1. The algorithms have a good
performance except for ECOD which displays a strong peak in the beginning in all four cases.



Table 1
Trend in anomalies for different algorithms

Algorithm  Cases with strong trend  Percentage of all cases

GMM 4 100%
DeepSVDD 3 75%
KNN 4 100%
ECOD 0 0%
Table 2
Early warning in number of operations
CB4 CB&
Open Close Open Close
GMM| =100 GMM| =1000 GMM| 193 GMM a7
DeepSVDD| =1000 |DeepSVDD 11 De epSV DD 108 DeepSVDD| =1000
KNMN| =1000 KMNN 25 KNN 158 KNN 95
ECOD| =100 ECOD| =1000 ECOD| =1000 ECOD a7

4.3.2. Existence of a Potential Warning Threshold.

The anomaly scores of a perfect algorithm would increase monotonously as the equipment
accumulates minor damage. If (in retrospect) we can take the 10" largest anomaly score as a
threshold, the ideal algorithm would give a warning 10 operations before failure. Using such a
threshold, the following early warning times are achieved for our actual algorithms (Table 2).
Some of the algorithms are foiled by early outliers that result in useless warnings.

4.3.3. Comparison to Traditional Metrics.

The traditional metrics can be used by a human to see developments and judge whether the
overall trend is detrimental. The metrics can act as manually defined “anomaly scores” and thus
be used as a benchmark for the anomaly detection algorithms.

For the first comparison, we normalize and smoothen the raw metrics. We also flip decreasing
metrics (i.e. total travel) for consistency. The results as shown in Fig. 7. One striking parallel to
Fig. 6 is the shape of the metrics and anomaly scores for CB6. Clearly, the anomaly is dominated
by these effects.

In Table 3, a subjective assessment of the visibility of trends is shown. Since opening and
closing uses different metrics, the highest score achieved for each category is 2 as opposed to 4
for the anomaly detection algorithms. T0 shows a good trend for both breakers.

The early warning potential of the various metrics is shown in Table 4. When compared to
Table 2, these values are inferior for the more complex failure seen in CB4. Total travel of CB6
is roughly on par with the anomaly detection algorithms.

Clearly, there are limitations to this comparison. Fig. 8 shows the three metrics for CB6 open.
Total travel is a solid metric. Delta Low Min/Max is not very useful for this fault, triggering a
series of false alarms from the middle of the endurance test. T0, however, would be quite useful
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Table 3
Trends in metrics-based anomaly detection
Metric Cases with strong trend  Percentage of all cases
Open Total Travel 1 50%
Delta Low Min/Max 0 0%
TO 2 100%
Close Total Travel 1 50%
Delta High Min/Max 1 50%
to 0 0%
Table 4
Metrics-based early warning in number of operations
B CRG
Open Close Open Oase
Total Trawsl| =1000 Total Trawel| =1000 Tovtal Tiranes a4 Tatal Trawve 131
Deltalow Min/ax| =1000 | Delta High Min/Max| =1000 | Delalow Min'kac] =1000 | Delta High binfsax 124
Td| =1000 10| =1000 TO| =1000 1| =1000

if a few outliers in the beginning could be removed.

5. Conclusions and Future Work

In this paper, we have applied four anomaly detection algorithms to data from two endurance
tests on medium voltage circuit breakers. We have compared the results to more traditional
metrics. While there are limitations on the verification of unlabeled data, some assumptions
have enabled us to show the strong performance of most of the algorithms we have tested.
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The best performance was given by KNN outperforming the deep model DeepSVDD. We come
to the conclusion that anomaly detection is indeed quite suitable for condition monitoring of
medium voltage breakers.

However, there is still room for improvement. Some early outliers on the anomaly scores
indicate that more data cleaning might help to further improve the results. Also, the raw data
as we used it is highly redundant. Techniques to reduce the dimensionality of the data by
removing redundancy could be tested to better understand the unexpectedly poor performance
of DeepSVDD. Another direction to explore is the combination of traditional metrics and
anomaly detection algorithms.

Finally, we plan to run additional endurance tests and obtain test results from other research
teams to further test the algorithms. We feel that more varies fault scenarios are needed to
better assess and improve the algorithms.
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