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Abstract
Pairwise Difference Learning (PDL) has recently been proposed as a new meta-learning technique for regression
and classification tasks. Instead of learning the sought mapping from instances to outcomes directly, PDL learns
a function that predicts the difference between the outcomes of any pair of instances given as input. To generate
predictions for a new query, the method averages over predicted differences from the outcomes of so-called anchor
points. This paper enhances the PDL regressor by incorporating techniques for anchor weighting, i.e., modulating
the influence of anchor points according to the reliability and precision of their predictions. Our extensive
empirical analysis demonstrates highly competitive performance of the weighted PDL regressor. Furthermore,
we provide an accessible and publicly available implementation of weighted PDL in a Python package.
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1. Introduction

Pairwise Difference Learning (PDL) was independently proposed by Tynes et al. [1] and Wetzel et al.
[2] as a meta-learning framework for regression. Instead of learning a regression function 𝑓 directly,
i.e., a mapping from instances to outcomes, PDL learns a function that predicts the difference between
the outcomes of any pair of instances given as input. The principle behind PDL is to rewrite 𝑓 at a point
𝑥 relative to another point (the anchor) 𝑥′: 𝑓 (𝑥) = 𝑓 (𝑥′) +Δ(𝑥, 𝑥′), where Δ(𝑥, 𝑥′) = 𝑓 (𝑥) − 𝑓 (𝑥′). PDL
aims to train an approximation Δ̃ of this difference function Δ, allowing for new predictions 𝑦 = 𝑓 (𝑥)
by averaging the predicted differences with respect to the training data (𝑥1, 𝑦1), … , (𝑥𝑁, 𝑦𝑁):

𝑦 ≈ 1
𝑁

𝑁
∑
𝑖=1

𝑦𝑖 + Δ̃(𝑥, 𝑥𝑖) (1)

An important motivation of PDL is the quadratic increase in training data, which makes the method
appealing in the small data regime, even if the data loses the property of independence. Moreover,
as PDL combines model-based learning (of the difference function Δ) with instance-based learning
(accumulating evidence from different anchors), the prediction (1) benefits from a statistical averaging
effect.

In (1), each training point 𝑥𝑖 contributes equally to the prediction. To enhance performance, one
may think of applying a weighting scheme where each anchor 𝑥𝑖 is assigned a weight 𝑤𝑖 (such that the
weights are non-negative and sum to one):

𝑦 ≈
𝑁
∑
𝑖=1

𝑤𝑖 ⋅ (𝑦𝑖 + Δ̃(𝑥, 𝑥𝑖)) (2)

This approach is in line with the general idea of instance weighting in machine learning [3], which is
most commonly used to increase the (relative) influence of training examples that are representative and
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reliable. In contrast, examples that are not representative or reliable— such as noise and outliers —may
bias the learner in the wrong direction and are given less weight. In other words, the weighting is
supposed to reflect the “competence” of an anchor as a local predictor, thereby enhancing the overall
prediction performance. However, as will be seen later on, the additional flexibility through weighting
can also have other advantages, such as speeding up predictions when some weights are zero. Moreover,
although this paper focuses on regression, the weighting strategy can be extended to other prediction
tasks as well.

Pairwise difference learning (PDL)

PDL for regression

PADRE: model-agnostic
implementation [1]

TNNR: Neural
Network compatible
implementation [2]

PDL for classification [4] Weighted PDL

K-NN anchors [5]
Sub-sample anchors [6]

Inverse Error;
Negative Error;
Ordered Voting;
Cluster Centers;
Weight Pruning;

Kullback–Leibler divergence (KLD);
(our contributions)

Figure 1: Contributions to PDL

Expanding on the PDL framework, our contributions are as follows (cf. Fig. 1):

• We introduce several innovative weighting algorithms to enhance the weighted PDL framework,
improving prediction accuracy by refining anchor contributions (Section 3).

• We expand the “pairwise difference learning library” (pdll) on PyPI to include our weighted PDL
implementation, ensuring compatibility with any scikit-learn model (Section 3.4).

• We perform a comprehensive experimental evaluation, comparing the performance of the PDL
Regressor to leading ML methods (Section 4).

2. Related Work

Tynes et al. [1] pioneered the Pairwise Difference Regressor, an innovative meta-learner designed for
chemical tasks. This method not only outperforms traditional random forest models in prediction accu-
racy but also delivers robust uncertainty quantification, proving particularly beneficial in computational
chemistry where estimating differences between data points can help correct systematic errors.

Simultaneously, Wetzel et al. [2] developed a similar approach using Twin Neural Network architec-
tures tailored for supervised and semi-supervised regression tasks. Their method predicts the differences
between target values of distinct data points and can leverage unlabeled data by pairing it with labeled
anchor data points. By ensembling the predicted differences, Wetzel et al.’s technique achieved high
performance in regression problems, albeit specialized for neural network models [2].

The literature on PDL has since diversified into various methodologies, as depicted in Fig. 1. Spiers
et al. [7] extended PDL to measure sample similarity in chemistry, emphasizing differences in spectral
shapes using Euclidean and Mahalanobis distances, and introduced a Z-score metric for outlier detection
and model adaptation. Jiménez-Luna et al. [8] applied twin neural networks, termed DeltaDelta, to rank
molecular potency.

PDL’s applicability extends beyond standard regression tasks. It can be adapted for targets that
are known, bounded, or defined by inequalities (e.g., 𝑦 = 5.3, 𝑦 < 2.1, or 𝑦 > 6.5) by predicting



relative changes between pairs [9]. Belaid et al. [4] adapted PDL for binary and multiclass classification,
demonstrating significant accuracy improvements across various benchmark datasets and highlighting
the theoretical underpinnings of PDL’s performance enhancements.

The PDL regressor and its variants have shown efficacy in diverse applications, including image-based
regression [10], chemical property prediction [11], quantum mechanical reaction modeling [12], drug
activity ranking [13], and approximating prudent response surface simulations [14].

In its typical implementation, PDL treats all training samples as equally important anchors. Recent
literature suggests methods to reduce complexity, such as random subsampling of 𝑘 anchors or selecting
the 𝑘 nearest anchors [5, 6]. Nevertheless, the original PDL method, which benefits from the statistical
advantages of averaging, remains superior [15].

In the field of data valuation, various techniques have been developed to assess the significance of
training samples. One approach, hard negative mining [16], prioritizes samples with higher losses, thus
enhancing model training efficiency. Kullback–Leibler Divergence (KLD) promotes higher entropy
in weight distributions, effectively penalizing peak values and improving performance across diverse
areas such as image classification and language modeling [17]. Another notable technique is stacked
generalization [18], an ensembling method where a learner makes final predictions based on the outputs
of multiple weak learners. This method can utilize a linear optimizer, leveraging the 𝐿1 and 𝐿2 losses
on a validation set, to select a subset of weak learners, thereby enhancing predictive performance [19].

3. Weighted PDL

Consider a standard setting of supervised (regression) learning: Given a set of training data

𝒟 = {(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1 ⊂ ℝ𝑑 × ℝ ,

comprised of training instances in the form of feature vectors 𝑥𝑖 ∈ ℝ𝑑 together with observed outcomes
𝑦 ∈ ℝ, and assumed to be generated i.i.d. according to an underlying (unknown) joint probability
measure 𝑃, the task is to learn a predictor PDR ∶ ℝ𝑑 → ℝ with low risk (expected loss) 𝑅(ℎ) =
E(𝑋 ,𝑌 )∼𝑃 𝐿(PDR(𝑋), 𝑌 ) according to a loss function 𝐿 ∶ ℝ2 → ℝ.

PDL Regressor transforms the original training data 𝒟 into the new data

𝒟𝑝𝑎𝑖𝑟 = {(𝑧𝑖,𝑗, 𝑦𝑖,𝑗) | 1 ≤ 𝑖, 𝑗 ≤ 𝑁} , (3)

where 𝑦𝑖,𝑗 denotes the difference 𝑦𝑖 − 𝑦𝑗 and 𝑧𝑖,𝑗 = 𝜙(𝑥𝑖, 𝑥𝑗) is a joint feature representation of 𝑥𝑖 and 𝑥𝑗.
The simplest representation is a concatenation of 𝑥𝑖 and 𝑥𝑗. Subsequent research on PDL revealed that
incorporating the difference vector 𝑥𝑖−𝑥𝑗 into this representation significantly boosts performance [1, 4].
Consequently, our work also employs this enriched feature representation.

A regressor ℎ is trained on 𝒟𝑝𝑎𝑖𝑟 in a conventional manner. For any pair of input vectors, 𝑥 and 𝑥′,
the role of this function is to predict the difference 𝑦 − 𝑦 ′ between their respective outcomes 𝑦 and 𝑦 ′.
We thus obtain the predicted difference function as Δ̃(𝑥𝑖, 𝑥𝑗) = ℎ(𝜙(𝑥𝑖, 𝑥𝑗)).

The pairwise difference predictor Δ̃ must adhere to the property of antisymmetry:

Δ̃(𝑥, 𝑥′) = −Δ̃(𝑥′, 𝑥) , (4)

for all 𝑥, 𝑥′ ∈ ℝ𝑑. However, this property is not guaranteed when learning Δ̃ from 𝒟𝑝𝑎𝑖𝑟, even if it holds
for the training data itself. We demonstrate the presence of this limitation in Annex B by quantifying
the error of learning the antisymmetry property using empirical experiments. To address this issue, one
can either restrict the class of regression functions to antisymmetric ones or incorporate antisymmetry
as a constraint in the learning process. To circumvent any restriction of the model class or complication
of the learning task, we adopt a straightforward solution: we “antisymmetrize” a predictor as follows:

Δ̃𝑠𝑦𝑚(𝑥, 𝑥′) =
Δ̃(𝑥, 𝑥′) − Δ̃(𝑥′, 𝑥)

2
. (5)



This solution was previously used with twin neural networks [2] and PDL Classifier [4].
At prediction time, given a query instance 𝑥𝑞, the outcome 𝑦𝑞 can be predicted using each data point

(𝑥𝑖, 𝑦𝑖) from the original training data 𝒟. Given that 𝑦𝑞 = 𝑦𝑖 + (𝑦𝑞 − 𝑦𝑖), and the difference 𝑦𝑞 − 𝑦𝑖 is
estimated by Δ̃𝑠𝑦𝑚(𝑥𝑞, 𝑥𝑖), the predicted value ̂𝑦𝑞 is formulated as ̂𝑦𝑞 = 𝑦𝑖+Δ̃𝑠𝑦𝑚(𝑥𝑞, 𝑥𝑖). Instead of relying
on a single prediction of this nature, PDL Regressor leverages all available anchors

̂𝑦𝑞 = PDR(𝑥𝑞) =
𝑁
∑
𝑖=1

𝑤𝑖 ⋅ (𝑦𝑖 + Δ̃𝑠𝑦𝑚(𝑥𝑞, 𝑥𝑖)) , (6)

such that ∑𝑁
𝑖=1 𝑤𝑖 = 1. In its basic version, PDL assigns the same importance to all training examples

(𝑤𝑖 =
1
𝑁 ) [1, 4], although some of them might be outliers, redundant, or mislabeled. As a more general

approach, we propose to optionally weight the anchor points. In our approach, these weights are
learned using a validation set 𝒟𝑣𝑎𝑙. We present the method in the general case where we are given 𝑘
anchors (𝑥𝑎1 , 𝑦𝑎1 ), … , (𝑥𝑎𝑘 , 𝑦

𝑎
𝑘 ) that may differ from the 𝑁 training points. We propose several approaches

to weighting the anchors. For each, we will discuss the primary intuition, the calculation method, and
the complexity. It is important to note that certain methods do not generate weights that sum up to
one, requiring an adjustment of the vector 𝑤 = (𝑤1, … , 𝑤𝑘).

𝑤𝑖 ←
𝑤𝑖

∑𝑗 𝑤𝑗
. (7)

We categorize the proposed approaches into three main types: optimization-based methods, heuristic
methods, and unsupervised learning methods.

3.1. Optimization Methods

We learn the weight vector 𝑤 = (𝑤1, … , 𝑤𝑘) for the 𝑘 anchors by solving a constrained optimization
problem. This involves minimizing the loss of the weighted predictions on the validation data, subject to
the constraints that all weights are non-negative and sum to 1. For regression, the weighted prediction
is defined by (6).

The loss function, representing the mean absolute error (MAE), is given by:

𝐿(𝑤) = 1
|𝒟𝑣𝑎𝑙|

∑
(𝑥𝑞,𝑦𝑞)∈𝒟𝑣𝑎𝑙

|𝑦𝑞 − ̂𝑦𝑞(𝑤)| , (8)

Without Regularization In this approach, we focus on a straightforward objective function that
minimizes the validation loss:

𝑤opt = arg min
𝑤∈[0,1]𝑘

𝐿(𝑤) s.t. ‖𝑤‖1 = 1 . (9)

Using Kullback–Leibler Divergence (KLD) To mitigate overfitting, we minimize a regularized
loss that promotes a uniform weight distribution. This prevents the assignment of excessive weight to
a single or few anchors. The objective function is defined as follows:

𝑤opt = arg min
𝑤∈[0,1]𝑘

𝐿(𝑤) + 𝜆 ⋅ 𝐿(𝑢) ⋅ KL(𝑤 ∥ 𝑢) s.t. ‖𝑤‖1 = 1 , (10)

where KL(𝑤 ∥ 𝑢) represents the Kullback–Leibler divergence (KLD) between the weight vector
𝑤 = (𝑤1, … , 𝑤𝑘) and the uniform distribution1 𝑢 = (1/𝑘, … , 1/𝑘), with 𝜆 as the regularization pa-
rameter relative to the initial validation loss 𝐿(𝑢).2 The KLD term penalizes highly concentrated weight
distributions, thus encouraging the optimizer to maintain a higher entropy in its weight distribution.

1Which can be simplified to log(𝑘) minus the entropy of 𝑤.
2For our experiments, we set 𝜆 to 0.05.



Using Weight Pruning Unlike the previous method that promotes a uniform weight distribution,
this method focuses on enhancing sparsity and reducing the magnitudes of weights. The 𝐿1 norm,
denoted as ‖𝑤‖1, is constrained to 1 in the optimization. Thus, the aim is to minimize the sum of the
𝑘 − 1 smallest weights. The 𝐿1 norm to minimize can be written as

arg min
𝑤∈[0,1]𝑘

𝐿1(𝑤) = arg min
𝑤∈[0,1]𝑘

‖𝑤‖1 − 𝑤max

= arg min
𝑤∈[0,1]𝑘

1 − 𝑤max

= arg min
𝑤∈[0,1]𝑘

−𝑤max

where 𝑤max is the largest weight in 𝑤. The objective function is defined as follows:

𝑤opt = arg min
𝑤∈[0,1]𝑘

𝐿(𝑤) − 𝜆1 ⋅ 𝐿(𝑢) ⋅ 𝑤max + 𝜆2 ⋅ 𝐿(𝑢) ⋅ ‖𝑤‖22 s.t. ‖𝑤‖1 = 1 . (11)

where 𝜆1 and 𝜆2 parameterize the trade-off between the MAE loss 𝐿(𝑤) and the minimization of the
weights. 𝐿(𝑢) allow having the same scale of magnitude as 𝐿(𝑤). We experiment with three parameter
settings: pure 𝐿1 loss (𝜆1, 𝜆2) = (0.1, 0), pure 𝐿2 loss (𝜆1, 𝜆2) = (0, 0.1), and a combination of 𝐿1 and 𝐿2
loss (𝜆1, 𝜆2) = (0.05, 0.025). When anchors are highly correlated, such as those from the same cluster,
𝐿1 loss tends to select only one anchor. In contrast, a mix of 𝐿1 and 𝐿2 regularizations encourages the
selection of grouped anchors, distributing the weights among them.

Using Extreme Weight Pruning To further investigate the impact of significantly reducing the
anchor set, we conduct experiments with (𝜆1, 𝜆2) = (0.8, 0) to evaluate the performance when a large
subset of weights is set to zero. If this approach results in more than 90% of null weights, we recursively
adjust 𝜆1 ← 𝜆1 ⋅ 0.5 and repeat the experiment. The process continues until 𝜆1 falls below 0.0001.

To solve the objective functions (9, 10, 11), we employ the Sequential Least Squares Programming
(SLSQP) method, which efficiently handles the constraints, such as ‖𝑤‖1 = 1. However, the SLSQP
optimizer introduces an additional computational cost of 𝒪(𝑘3) [20].

3.2. Heuristic Methods

Inverse Error The Inverse Error method is based on the intuition that anchors yielding lower
validation errors should be assigned higher weights, as they are likely more reliable predictors. We use
the mean absolute error (MAE) to quantify the validation error associated with the anchor (𝑥𝑖, 𝑦 𝑖):

𝑒𝑖 =
1

|𝒟𝑣𝑎𝑙|
∑

(𝑥𝑞,𝑦𝑞)∈𝒟𝑣𝑎𝑙

|(𝑦𝑖 + Δ̃𝑠𝑦𝑚(𝑥𝑞, 𝑥𝑖)) − 𝑦𝑞| . (12)

The anchor weights are computed as the inverse of these errors:

𝑤𝑖 =
1

𝑒𝑖 + 𝜖
.

Here, 𝜖 is a small constant (e.g., 𝜖 = 0.0001) added to prevent division by zero and ensure numerical
stability. These weights are then normalized using (7). This method directly links anchor weights to their
individual performance, assigning greater influence to better-performing anchors. Its primary advantage
lies in the independent estimation of error 𝑒𝑖 from the validation set, resulting in a straightforward
and computationally efficient approach. However, it does not account for the potential mutual error
cancellation effects that might arise from ensembling multiple anchors. This method operates with a
time complexity of 𝒪(𝑘 ⋅ |𝒟𝑣𝑎𝑙|).

Negative Error The Negative Error approach assigns weights to anchors inversely related to their
anchor-wise error, as calculated in (12). Specifically, the weight is determined by subtracting the error
from the maximum error across all anchors: 𝑤𝑖 = max(𝑒1, … , 𝑒𝑘)− 𝑒𝑖 . These weights are then normalized
according to (7). This method operates with a time complexity of 𝒪(𝑘 ⋅ |𝒟𝑣𝑎𝑙|).



Ordered Voting The Ordered Voting method ranks anchors based on their errors 𝑒𝑖 from (12) in
ascending order. Each anchor is assigned a rank 𝑟𝑖 ∈ {1, … , 𝑘}, where the anchor with the lowest error
receives rank 1 and the one with the highest error receives rank 𝑘. Weights are then assigned based on
these ranks:

𝑤𝑖 =
𝑘 − 𝑟𝑖 + 1
𝑘(𝑘 + 1)/2

.

The computational cost of this method equals the cost of the negative error method plus the complexity
of sorting the anchors, yielding a total time complexity of 𝒪(𝑘 ⋅ |𝒟𝑣𝑎𝑙| + 𝑘 ⋅ log(𝑘)).

3.3. Unsupervised Method: K-means Cluster Centers

To significantly reduce the number of anchors and accelerate the prediction process, we leverage
K-means clustering to identify prototypical cluster centers within the training set. The method searches
for a number of cluster centers equal to 10% of the training samples or at least 3. Then, it retains
only the anchors closest to these centers. This approach ensures that the retained anchors are highly
representative of the dataset, thereby reducing the anchor set size without sacrificing representativeness.
K-means operates with a time complexity of 𝒪(𝑘2 ⋅ 𝑑 ⋅ 𝑡) given 𝑑 features and 𝑡 iterations.

In a similar vein, Wetzel proposed selecting the 𝑘-nearest neighboring anchors to each unseen test
point [5]. Although this method dynamically selects anchors and requires the entire anchor set in
memory, our K-means clustering approach permanently reduces the anchor set, leading to memory
savings.

3.4. PDL Library

Our library3 offers a Python implementation of the weighted PDL, conforming to Scikit-learn standards.
This compatibility ensures seamless integration into existing codebases with minimal adjustments. The
following example demonstrates how to incorporate the weighted PDL with just one additional line of
code:

1 !pip install pdll

2 from pdll import PairwiseDifferenceRegressor

3 X_train, X_val, y_train, y_val = load_data()

4 model = RandomForestRegressor()

5 model = PairwiseDifferenceRegressor(model)

6 model.fit(X, y)

7 model.learn_anchor_weights(X_val, y_val, method='L2') # Added line

8 model.predict(...)

4. Evaluation

To benchmark the proposedweighted PDLmethods, we use a variety of public datasets fromOpenML [21]
and state-of-the-art Scikit-learn baseline learners [22].

4.1. Data

OpenML offers a diverse range of datasets, with 61% containing fewer than 2000 data points. This study
focuses on these smaller datasets, where the pairwise learning approach is presumably most effective.
Adhering to dataset selection constraints similar to the OpenML-CC18 benchmark [23], we randomly

3Link: https://github.com/Karim-53/pdll

https://github.com/Karim-53/pdll
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Figure 2: Distribution of key characteristics of the 231 OpenML regression datasets used for evaluation,
specifying the minimum, mean, and maximum. On average, the datasets contain around 400 data points with
around 16 features. Most features are numeric.

selected 231 datasets (summary statistics in Fig. 2). Despite their small size, the effective data volume
for PDL increases quadratically due to pairing, resulting in over 1, 000, 000 pairs of training data points.

We evaluated the methods using 7 baseline models, conducting 5 iterations of 5-fold cross-validation
on each of the 231 datasets, following a similar approach to a previous benchmark study on PDL for
classification [4]. This resulted in a total of 80, 850 train-test runs, consuming one week of wall-time on
a high-performance computing cluster. The validation set comprised 30% of the training data.

4.2. Data Processing Pipeline

We implemented a standardized data processing pipeline for all runs using scikit-learn [22]. This
pipeline includes standardization for numeric features, one-hot encoding for nominal features, and
ordinal encoding for ordinal features. Since PDL requires the pair difference 𝑥𝑖 − 𝑥𝑗 as additional inputs,
all processed features are treated as numeric when computing these differences.

4.3. Performance Measures

We evaluate performance using the mean absolute error (MAE) and the normalized MAE (NMAE) for
regression tasks:

NMAE = MAE
max(𝑦truth) −min(𝑦truth)

.

To compare models, we count the number of wins and losses based on the average performance over 25
runs (5 times 5-fold cross-validation) per dataset. A win is counted when PDR’s average performance
exceeds that of the baseline model, and a loss is counted otherwise. Similarly, when comparing PDR to
weighted PDR using L2, a win is counted if the weighted PDR using L2 outperforms the PDR.

To determine significant wins and losses, we perform a Student’s t-test for each dataset to assess the
statistical significance of performance differences. A win or loss is considered significant if the p-value
is below a predetermined threshold (𝛼 = 0.05). In cases where average scores tie, the total number of
wins and losses may not sum to 231, which is the total number of datasets benchmarked.

As an alternative to counting wins and losses, we also consider the average performance across all
datasets ± the standard error. While this statistic is meant to provide a first impression, it should be
interpreted with caution, because averaging over different datasets is theoretically questionable.

4.4. Results

This section compares PDL with baseline ML methods, evaluates the proposed weighted PDL methods,
and finally contrasts the best weighted PDL with standard PDL.



Table 1
Comparing 7 baseline regressors and the PDR meta-algorithm, averaging over 231 datasets.

Significant wins Wins MAE Normed MAE
Estimator Base PDR Base PDR Base ±sem PDR ±sem Base ±sem PDR ±sem
Bagging 21 135 60 171 0.4376 ±0.0033 0.4115 ±0.0036 0.0881 ±0.0008 0.0827 ±0.0008
DecisionTree 0 203 6 225 0.5413 ±0.0042 0.4438 ±0.0040 0.1086 ±0.0010 0.0891 ±0.0009
ExtraTree 1 204 7 224 0.5700 ±0.0043 0.4120 ±0.0036 0.1144 ±0.0010 0.0829 ±0.0008
ExtraTrees 8 150 33 198 0.4066 ±0.0034 0.3872 ±0.0034 0.0818 ±0.0008 0.0779 ±0.0008
GradientBoosting 38 131 61 170 0.4159 ±0.0035 0.3994 ±0.0034 0.0840 ±0.0008 0.0806 ±0.0008
HistGradBoosting 19 170 38 193 0.4779 ±0.0036 0.3940 ±0.0037 0.0985 ±0.0009 0.0794 ±0.0008
RandomForest 49 108 95 136 0.4192 ±0.0032 0.4102 ±0.0036 0.0845 ±0.0008 0.0825 ±0.0008

Does PDL systematically enhance regression task performance? Previous studies utilizing the
PDL regressor have been limited to datasets primarily within the chemistry field. Our comprehensive
evaluation attempts to confirm the added value of this meta-algorithm across a broader range of
datasets. Analyzing 231 datasets, our results indicate variable improvements across different base
learners, as detailed in Tab. 1. On average, PDL consistently outperforms the base learners. In 89% of
the cross-validation runs, the PDL regressor achieves a strictly better test MAE. Among the baseline
models, the Extra Trees Regressor recorded the best average performance, with PDR(Extra Trees
Regressor) achieving the highest performance overall among all baseline and PDR models. These
findings collectively highlight PDL’s effectiveness in enhancing performance independently of the base
learner, with the weighted variant offering a valuable alternative through its unique characteristics.
Given the excellent performance of PDL, a natural question arises: why does PDL outperform all the
studied baselines? Previous work has already proposed some hypotheses [1], conducted empirical
tests [2], and provided theoretical explanations for how each component of PDL contributes to its
superior performance [4]. Therefore, we will limit this discussion to a general overview, allowing us to
better focus on the weighted methods.

Whichweighted PDLmethod performs best? The critical difference (CD) diagram in Fig. 3 visually
compares the performance of ten proposed weighting methods based on their MAE across 231 datasets.
The models are ranked from left to right, with lower ranks indicating better performance. The diagram
employs the Wilcoxon signed-rank test to statistically compare each pair of algorithms and applies
Holm’s method to control for the family-wise error rate. The extensive dataset and cross-validation
runs confirm the robustness of the results, although not all methods show significant differences. While
the pure L2 weighting method achieves the highest average ranking (4.5), it only secures the first rank
in 58% of the run. This indicates that other methods may outperform L2, depending on the dataset.

Other methods find the optimal weights less frequently but offer distinct advantages. For instance,
heuristic methods can accelerate the weighting process thanks to their lower time complexity and
suitability for online algorithms, as they would require the execution of the algorithm only on the added
or removed anchors. The normalization of the weights can also be done in an online manner. On the

Figure 3: Critical difference diagram comparing the rank of ten Weighted PDL methods using the average
ranking of the test MAE across 231 datasets. Lower numbers indicate a better average rank.



other hand, 𝐿1 and 𝐿2-based methods, along with the K-means method, enhance the prediction speed
by reducing the number of anchors used, albeit with a potential increase in overfitting compared to the
KLD method.

Table 2
Comparing PDR and weighted PDR using L2. Averaging over 231 datasets.

Significant wins Wins MAE Normed MAE
Estimator PDR L2 PDR L2 PDR ±sem L2 ±sem PDR ±sem L2 ±sem
Bagging 1 108 45 185 0.4115 ±0.0036 0.4026 ±0.0035 0.0827 ±0.0008 0.0811 ±0.0008
DecisionTree 27 64 88 142 0.4438 ±0.0040 0.4367 ±0.0039 0.0891 ±0.0009 0.0879 ±0.0009
ExtraTree 36 35 123 108 0.4120 ±0.0036 0.4131 ±0.0037 0.0829 ±0.0008 0.0833 ±0.0009
ExtraTrees 9 96 55 176 0.3872 ±0.0034 0.3825 ±0.0035 0.0779 ±0.0008 0.0770 ±0.0008
GradientBoosting 13 88 66 164 0.3994 ±0.0034 0.3946 ±0.0034 0.0806 ±0.0008 0.0797 ±0.0008
HistGradBoosting 2 115 35 196 0.3940 ±0.0037 0.3861 ±0.0036 0.0794 ±0.0008 0.0780 ±0.0008
RandomForest 4 115 43 188 0.4102 ±0.0036 0.4003 ±0.0035 0.0825 ±0.0008 0.0807 ±0.0008

Does the extension to weighted PDL Regressor using L2 enhance performance? In our
comprehensive empirical study comparing original PDR and weighted PDR using L2 regularization
across 231 datasets, the results indicate a clear performance advantage of the weighted version, see
Tab. 2. The only exception is PDR based on Extra Tree. However, the most significant finding is the
ability to improve on top of Extra Trees, which has the best performance among PDRs. Although the
improvement over the MAE seems small, it is statistically significant (as determined by the t-test for
significant wins), and it allows us to reach a new top performance not reached by any baseline or PDR
model.

5. Conclusion

Building on the basic idea of pairwise difference learning, we proposed instance (anchor) weighting as
an extension of this meta-learning method for regression. To determine suitable weights, we proposed
approaches based on simple heuristics, linear optimizers, as well as unsupervised learning algorithms.
In a large-scale empirical evaluation of weighted PDL regression, we confirmed its potential and showed
that it consistently outperforms the baseline models and PDR models. Each weighting method offers
specific advantages: faster computation complexity, better performance, or faster predictions after
computing the weights.

In summary, given the availability of a validation set, the use of weighted PDL is highly recommended.
Leveraging our Python package enables straightforward and efficient implementation of this approach.
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A. Reproducibility

We provide a script in the pdll GitHub repository4 to reproduce our results. Simply start the script, and
it will run the script on all datasets and machine learning baseline models we used in this paper with 5
repetitions for all 5 cross-validation folds.

We recommend you to use python 3.9 or python 3.10, because we tested it extensively with those
versions. The runtime of the whole script is over a week. Feel free to select a subset of the datasets or

4https://github.com/Karim-53/pdll/blob/main/run_benchmark_weighted_pdr.py
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baseline models to get preliminary results. Or let the script run for an hour and stop it, the script saves
checkpoints that you can use.

B. Can PDL Regressor learn the antisymmetry property?

Taking a popular example for this empirical experiment, we consider the Boston house-price dataset
and a minimalist training set containing only 𝑁 = 100 data points. The base learner (histogram gradient
boosting regressor) is trained with 𝑁 2 = 10, 000 pairs. The target output ranges from 5 to 50 in the
training set. We calculate the absolute difference Δ𝑖𝑗 = |Δ̃(𝑥𝑖, 𝑥𝑗)+ Δ̃(𝑥𝑗, 𝑥𝑖)| for training pairs with 𝑥𝑖 ≠ 𝑥𝑗.
If the pairwise difference predictor Δ̃ was antisymmetric, then all Δ𝑖𝑗 would be equal to 0. However,
these values may become as large as 2.5, i.e., 5.5% of the target space. The absolute difference can
reach 25% on other datasets used in the evaluation section. Additionally, certain symmetric pairs have
predictions of the same sign. Despite training on all pair combinations, the PDL regressor is not able to
learn the antisymmetry property even on the training set.

C. Extended results

Fig. 4 presents a scatter plot that contrasts the performance of baseline machine learning models with
their equivalent Pairwise Difference Regression (PDR) implementations (without any weighting). Each
point on the plot signifies the average Test Mean Absolute Error (MAE) over 25 runs, categorizing the
results into significant wins for PDR, significant wins for the baseline, or non-significant differences.
The plot illustrates that while PDR consistently surpasses simpler ML models, achieving significant
improvements over robust ensemble methods like Extra Trees becomes more challenging.

Similarly, Fig. 5 depicts a comparison between PDR and the most promising anchor weighting method
based on the L2 regularization. Although the performance gains recorded with the L2 method are
smaller, they remain noteworthy and significant.
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Figure 4: Scatter plot of the baseline and PDR model, showing the test MAE per dataset, averaged over 25
cross-validation runs.
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Figure 5: Scatter plot of the PDR model and weighted PDR using L2 weighting, showing the test MAE per
dataset, averaged over 25 cross-validation runs.
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