A Framework for Categorizing Product Configuration
Systems (Position Paper)

Joachim Baumeister’#*, Konstantin Herud?, Lukas Ley? and Jochen Reutelshéfer?

"University of Wiirzburg, Am Hubland, Wiirzburg, Germany
2denkbares GmbH, John-Skilton-Strafle 8, Wiirzburg, Germany

Abstract

Despite significant progress in smart product configuration systems, driven by automation and techno-
logical advancements, a key challenge persists: the absence of a standardized framework for evaluating
those systems with respect to the richness of the used knowledge representation language. We tackle
this challenge by introducing a framework of profiles, that categorizes and compares different systems’
expressiveness and practical applicability in industrial settings.

Keywords

Smart Product Configuration, Knowledge Engineering, Knowledge Representation

1. Introduction

The challenge of configuration has been a fundamental aspect of expert systems (XPS) [1, 2]
since the 1980s. In recent years, product configuration systems have seen a significant surge in
interest, driven by advancements in automation and the rise of Industry 4.0 within mechanical
engineering and production domains [3, 4, 5]. A variety of tools and methodologies have
emerged in the market to efficiently support the product configuration process, often integrated
in so-called Configure-Price-Quote (CPQ) tools. However, a thorough market analysis reveals a
significant challenge: It is difficult to compare these tools due to the lack of a comprehensive
benchmark for assessing performance. The combinatorial nature of configuration problems
makes the solving task a challenge at scale. Moreover, the effectiveness of these tools is not
solely dependent on performance; the expressive power of their knowledge representation
language also plays a crucial role.

Reflecting on the past, the development and innovation of early Expert Systems (XPS) achieved
significant advancements by distinguishing the problem-solving method from the knowledge
base and its acquisition, as illustrated in Figure 1. A problem-solving method in Expert Systems
describes an inference engine to solve a given problem context.

The purpose of this position paper is to revive this approach by outlining a conceptual
framework that identifies the essential tasks involved in product configuration knowledge and
organizes them into a series of definable properties. By introducing these so-called profiles, we
aim to make engines and methods comparable once more, both in terms of their expressiveness
and their practical applicability in real-world scenarios.

LWDA’24: Lernen, Wissen, Daten, Analysen. September 23-25, 2024, Wiirzburg, Germany
*Corresponding author.

& joba@uni-wuerzburg.de (J. Baumeister)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

mailto:joba@uni-wuerzburg.de
https://creativecommons.org/licenses/by/4.0

Problem-solving
methods
Algorithms
Knowledge
Data Data
Conventional Programs Expert Systems

Figure 1: Separation of problem-solving methods and knowledge base, Puppe [2].

This framework is grounded in extensive experience from consulting projects that focus
on implementing smart product configuration systems within the industrial engineering and
production domain. For the configuration task, we propose smart product configuration as an
advanced problem-solving task, extending traditional frameworks to meet contemporary needs.

A similar research has been started by Tiithonen [6], where PCML as a declarative language
for product configuration knowledge with a formal semantics was introduced and applied
to industrial knowledge bases. Here, the complexities of the particular knowledge bases are
listed, e.g., percentage of cardinality use, the size of the value domains, and total number of
features. However, no categorization of the knowledge elements is discussed, neither are the
requirements of smart configuration considered. The introduction of OWL2 profiles [7, 8]
followed a similar idea: Here, different OWL2 profiles are defined for fractions of the semantic
web language OWL in order to support the knowledge engineering process and the reasoning
support. Each OWL2 profile covers a specific collection of expressions.

2. Smart Product Configuration

In comparison to classic product configuration systems, a smart product configuration system
always remains in the space of valid solutions. We first introduce the solution space for product
configuration systems.

2.1. The Solution Space in Product Configuration

In product configuration, the term solution space denotes the set of all possible configurations
that satisfy the requirements and constraints given in the knowledge base. For n features in a
knowledge base, the solution space can be thought of as an n-dimensional space. Each dimension
of this space belongs to the value domain of a feature. We illustrate this by an example with
three features in Figure 2.

In Figure 2 we illustrate the solution space with a small example based on the configuration
of a bike. Here, for the sake of simplicity only the three features Color, wheel Size, and Bag
design can be configured by the user. The left side of Figure 2 shows the solution space of
possibly producible bikes without any constraints, i.e., 5 X 5 x 4 = 100 possible configurations
are depicted. The right side shows the solution space considering a number of constraints,
restricting the number of valid configurations. Configurations that satisfy all constraints are

Invalid configurations Valid configurations

/[S L
/

Color
Red
Yellow

Blue Bag Bag
Classy Classy
Green Spaceman Green Spaceman
Black Unicorn Unicorn

Pinky Pinky

20 18 16 14 10
ze

20 18 16 14 10
Si ze

Si

Figure 2: The whole solution space for three configurable features (left) and the restricted solutions
space based on constraints (right).

shown in green. Configurations that violate any of the constraints and are thus invalid, are
shown in gray. Consider as an example for a constraint the right front corner of the right cube.
We see that pinky bags and wheel size 10 is only allowed for blue and green colored bikes.

In the following, we motivate that smart configuration systems need to be aware of the solution
space at any time of the configuration process. Within the solution space, systems need to
focus on optimizing certain aspects such as cost, performance, or manufacturing efficiency.
Recent smart configuration systems navigate the solution space efficiently to find the optimal
configurations given these criteria.

2.2. Elements of Smart Product Configuration

In comparison to a classic configuration system, a smart product configuration system offers a
number of benefits to the user:

Flexible and Secure Configuration: Users have the freedom to customize their product by
selecting features in any order they prefer, while ensuring all configurations remain valid.
Once a user selects a feature, the system will not change it unless explicitly approved
by the user. The status of the configuration depends solely on the number of features
selected, not the order in which they are chosen. This is possible due to the declarative
nature of smart configuration knowledge bases in contrast to procedural statements in
classical configuration systems.

Interactive Configuration Process: During the configuration process, the system displays
available options for each feature and identifies which choices are currently blocked,
because they would violate constraints. This ensures the user remains within the solution
space, i.e., the space of valid product configurations.

Conflict Resolution and Explanations: If a desired value is blocked due to a potential con-
flict with existing choices, then the system suggests modifications to previous selections
that could resolve the conflict. This allows for the inclusion of the desired feature while

maintaining a valid product configuration. Additionally, the system provides detailed
explanations for why certain configurations are not permissible, helping users understand
the constraints.

Intelligent Default Settings: The system establishes default settings for features that the
user has not yet configured, boosting the initial setup process and enhancing the user
experience.

In summary, a smart configuration system places much greater demands on the engine than
a classic configuration system. For example, a procedural evaluation of the knowledge and the
consideration of the evaluation sequence is no longer possible. In addition, a smart configuration
system must be able to offer a valid configuration at all times, including at the beginning of a
configuration session.

3. Product Configuration Profiles

Product configuration systems are built by using a knowledge representation language. We
introduce the open and textual language COOM for defining product configuration knowledge
bases. COOM stands for “COnfiguration Object Model” and is described as an open standard
language [9]. This language is intended to serve as an interface between knowledge bases from
different origins and reasoning engines with varying specialization.

CPQ System X1]
CPQ System X2

R { Engine A J

N-LIN | D-COND | C-FIX

ERP System Y1] Engine B
ERP System Y3 J N-OUT | C-OPEN
COOM
Syntax & Semantics)
Engine C
KE Workbench K] ~ { N-LIN | C-OPEN | D-BASE J

J

Proprietary System Level Open Knowledge Level Standardized Engine Level

Figure 3: Integration of the COOM language into the product configuration workspace.

A typical scenario for using the COOM language in an application scenario is illustrated in
Figure 3: The knowledge developed in proprietary product configuration systems is compiled
into the open COOM syntax. In COOM the required profiles are identified and a suitable

reasoner can be selected. A corresponding reasoner then is linked to the original CPQ system
or another end-user interface. Besides commercial implementations of COOM profiles, there
already exists an open-source engine of COOM [10]. We sketch the elementary blocks of the
COOM language in the following.

3.1. Basic Syntax of COOM

Here, we introduce the most important concepts of the language by example. For a complete
and thorough introduction to the language we refer to coom-lang.org.

In the following we illustrate essential parts of the COOM language with examples from the
bicycle domain. We define a "PaperKidsBike"! where customers are only allowed to configure
the color of the bike, the size of the wheels, the version of the two bags, and whether the bike
should have support wheels or not. Also, customers are able to enter the weight of the bike’s
driver.

The knowledge base is organized as a hierarchical structure of feature elements, which
together form a comprehensive representation of the product to be configured. In the exam-
ple, we see that the markup product defines an instance kidsBike of the structure type
PaperKidsBike. Recursively, the PaperKidsBike type is defined by the enumeration types
Color, Bag and Wheel and a boolean type representing the option support wheels, plus a
numerical type holding the weight of the driver. The type Bag has fixed cardinality 2, i.e.,
exactly two bag instances are attached to the bike.

1 product {

2 PaperKidsBike kidsBike
)

4

5 structure PaperKidsBike {
6 Color color

7 2 Bag bag

8 Wheel wheelSize

9 bool supportwheel
10 num driversWeight
1o}

13 enumeration Wheel { W14 w16 W18 W20 }

15 enumeration Color { Red Yellow }

17 enumeration Bag { Classy Spaceman Unicorn Pinky }
v behavior PaperKidsBike {

20 condition color = Yellow
21 require wheelSize = W18 || wheelSize = W20

2« behavior PaperKidsBike {

"The PaperKidsBike is an extended version of the KidsBike model (https://www.coom-lang.org/profile_core).

https://www.coom-lang.org/profile_core

25 combinations (supportWheel wheelSize driversWeight)
26 allow (true (W14,wW16) <30)
27 allow (false (W18,W20) —% -)
28}

Besides this terminological knowledge also a suite of behavioral knowledge is included
constraining values of the terminology. In the example, we see a behavior block stating
that yellow bikes are only allowed for large wheel sizes W18 and w20. Also, in a table-based
representation, we see that wheel support is only allowed for the small wheel sizes w14 and
W16 and a drivers weight less than 30kg. The weight of the rider does not matter if no wheel
supports are fitted and the wheel size is either W18 or W20. The product model specifies, that
only small and lightweight kids should have a support wheel and the small wheels.

In addition to the elements mentioned above, the COOM language offers a variety of more
refined expression options for mapping configuration knowledge (see [9]).

3.2. Applications of Product Configuration Profiles

When we look at commercial and research systems for product configuration, we realize that
no system can map the full expressiveness of the COOM language. However, in most cases this
is not necessary, as different industrial projects may have different requirements in terms of
the expressive power. For example, simpler dependencies between configurable components
may only necessitate the formation of basic relationships using core language elements. Hence,
it is not essential for all implementations of reasoners to support every language feature.
Consequently, more efficient reasoners can be crafted specifically for knowledge bases that utilize
only certain language elements. The variability of expressiveness permits the development of
various reasoners tailored to the different complexities inherent in knowledge elements.

We introduce product configuration profiles (profiles) in order to map these requirements and
the features of the different system approaches. Each profile slices the language into a specific
aspect, for instance the handling of numerical constraints or the reasoning with cardinalities.
Partitioning the language into profiles offers a number of benefits:

1. Knowledge Engineering: When building a new product configuration knowledge base,
the requirements can precisely be communicated with knowledge engineers, customers,
and users.

2. Engine Identification: A product configuration engine working with the knowledge
base has a clear requirements sheet. That way, selecting an appropriate engine will
become a simpler task.

3. Engine Comparison: Alternative engines implementing the same profile can be evalu-
ated and compared in an accurate manner, because a clear focus on specific profile aspects
can be set.

It is worth noticing that we do not present an exhaustive set of profiles. Rather, we expect
additional profile slices to appear with the growing number of industrial projects and community
feedback. Furthermore, the profiles presented can be regarded as a general categorization of
product configuration knowledge independent of COOM. The COOM language is only used
here to visualize the profile properties.

NUMERICAL l DEFAULTS
CARDINALITIES

N-OUT N-LIN — N-FULL C-FIX C-USER C-OPEN D-BASE —» D-COND
Figure 4: Profiles for product configuration.

Figure 4 depicts the current profiles as a hierarchical view, where the CORE profile (see
Section 3.3) is a required profile and all other profiles are optional additions to this profile. Each
profile definition refers to an example knowledge base representing a special kind of bike. The
actual implementations of the bikes can be found in the appendix of this paper.

3.3. The CORE Profile

We introduce the CORE profile providing the essential language elements required to establish a
basic configuration knowledge base. Products are described through structures and enumerations
of predefined choice values. The relationships among the values of different features are
established through constraints. These constraints specify combinations of choice values that
are either permitted or prohibited. The CORE profile is required and all following profiles build
upon it.

3.4. Handling of Numerical Constraints (N)

The N-OUT profile is designed for calculations of numerical values that do not restrict the
solution space. Because the outcomes of these calculations do not have significance to whether
some configuration is valid or not, they are considered external to the solution space. A practical
use of the N-OUT profile might be calculating the price or weight of a product after the user
has entered a valid configuration.

In contrast, the N-LIN profile facilitates calculations of numerical values within the solution
space, similar to the following N-OUT profile. Then, the calculation results further constrain the
range of valid configurations, typically occurring when computational outcomes are integrated
within other constraints. In the N-LIN profile calculations in the solutions space are only
allowed, if they are based on linear equations. A common application of N-LIN is summing a
collection of numerical values. The use of non-linear numerical operators such as sqrt, cos, and
pow will cause the system to exit this profile and will yield N-FULL.

The N-FULL profile extends N-LIN when handling numerical calculations in the solution
space. Here, also superlinear calculations are allowed, whereas N-LIN only permits linear
calculations. It is important to note that implementing the N-FULL profile can be challenging
for declarative configuration engines, as they must find states for numerical values during the
configuration process that satisfy all equations.

3.5. Handling of Cardinalities (C)

In the previous example, we illustrated that features can possess a cardinality, as seen when we
defined two instances of the type Bag in the PaperKidsBike product.

The C-FIX profile supports the explicit specification of fixed cardinalities for a specific
element (as done in the example). However, introducing cardinality ranges, such as 2..5, will
exit this profile.

Conversely, the C-USER profile accommodates user-defined cardinalities for a specific
element, allowing users to specify the number of instances during the configuration process.
For example, we would require the C-USER profile, when the concrete amount of Bag instances
is not defined in the knowledge base (as in the PaperKidsBike) but can be changed by the
user during the configuration session.

Lastly, the C-OPEN profile permits the representation of arbitrary cardinality ranges for
features. This flexibility means that the exact cardinality does not need to be predetermined
in the knowledge base or by the user during configuration. Instead, the required number of
instances is dynamically calculated by the reasoner, based on the constraints defined in the
knowledge base. It is worth noticing, that—to the knowledge of the authors—only special
purpose reasoners support open cardinalities in a smart product configuration setup. In the Bag
example, the reasoner might derive the required number of Bag instances for a user-entered
value such as the required total capacity for instance.

3.6. Handling of Defaults (D)

Typically, a configuration is created by users entering values for enumeration instances and
primitive type instances. In addition, default values are recommendations for values that were
not yet selected. A default value is automatically assigned to a value if the user has not entered
a value previously, provided that this default value does not violate any existing constraints.

The D-BASE profile supports the establishment of simple default values. In this profile,
default values are initially determined by the reasoner but may be overwritten by the user
or through behavior knowledge. However, this profile only supports the basic assignment
of default values, and no alterations to these defaults are permitted during the configuration
session.

The D-COND profile expands upon D-BASE by allowing for the assignment of conditioned
default values. These defaults can be limited to particular combinations of other values, meaning
they may be adjusted during the configuration session if certain values are entered by the user
or triggered by another constraint.

It is conceivable that a knowledge base might contain contradictory default knowledge,
especially when multiple default rules that apply to the same feature overlap. The resolution of
such conflicts typically depends on the reasoner’s specific conflict resolution strategy.

4. Conclusions

This paper proposed an approach for partitioning knowledge for building configuration systems
into profiles, based on different core aspects of product configuration. We introduced the open

language COOM and used it to describe a general set of profiles for product configuration
knowledge. Clearly, with new profile requirements the language will also grow. This can for
instance be helpful for reasoner selection. That is, if a reasoner proves very efficient for a
particular product model, then for other product models having the same language profile, that
particular reasoner is also an interesting choice.

The presented work is an on-going task. In the future, we aim to conduct a systematic
comparison of current state-of-the-art reasoners in this field. This will involve evaluating our
approach with respect to the adaptability across different engines. Additionally, we plan to
explore the semantic interpretation of the COOM language by describing an RDF representation
of the COOM syntax. This effort will facilitate a deeper understanding and broader implemen-
tation of the language. Finally, there is a clear need for more research into practical use cases,
particularly concerning the extension of profiles. Investigating these areas will enable us to
refine the COOM framework to better suit real-world applications. An interesting example will
be the generalization of the default profiles to optimization of configurations.

References

[1] J. McDermott, R1: A rule-based configurer of computer systems, Artificial Intelligence 19
(1982) 39-88.

[2] F. Puppe, Systematic Introduction to Expert Systems, Springer, Berlin, 1993.

[3] A.Felfernig, L. Hotz, C. Bagley,]J. Tiihonen, Knowledge-based Configuration: From Re-
search to Business Cases, 1 ed., Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2014.

[4] L. Hvam, N. Mortensen, J. Riis, Product Customization, Springer, 2008.

[5] A. Falkner, G. Friedrich, A. Haselbock, G. Schenner, H. Schreiner, Twenty-five years of
successful application of constraint technologies at siemens, Al Magazine 37 (2017) 67-80.
URL: https://ojs.aaai.org/index.php/aimagazine/article/view/2688. doi:10.1609/aimag .
v3714.2688.

[6] J. Tithonen, Characterization of configuration knowledge bases, in: Workshop on Intelli-
gent Engineering Techniques for Knowledge Bases (IKBET), 2010.

[7] M. Krotzsch, Owl 2 profiles: An introduction to lightweight ontology languages,
in: Reasoning Web Summer School 2012, Springer, 2012, pp. 112-183. doi:10.1007/
978-3-642-33158-9_4.

(8] W3C OWL Working Group, OWL 2 Web Ontology Language Document Overview (Second
Edition) - W3C Recommendation 11 December 2012, 2012. URL: http://www.w3.org/TR/
owl2-overview/.

[9] coom-lang, https://www.coom-lang.org, 07.2024.

[10] coom-suite, https://github.com/potassco/coom-suite, 07.2024.

https://ojs.aaai.org/index.php/aimagazine/article/view/2688
http://dx.doi.org/10.1609/aimag.v37i4.2688
http://dx.doi.org/10.1609/aimag.v37i4.2688
http://dx.doi.org/10.1007/978-3-642-33158-9_4
http://dx.doi.org/10.1007/978-3-642-33158-9_4
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/
https://www.coom-lang.org
https://github.com/potassco/coom-suite

A. The Bike Family: Profile Examples in COOM

We illustrate each profile presented in this paper by a small demonstration implementation,
each introducing a new kind of bike. Please note, that for more verbose introduction of the
COOM syntax we refer to the language description [9].

A.1. COOM Core: KidsBike

1 product {

: KidsBike kidsBike

3 }

4

5 structure KidsBike {

6 Color color

7 bool supportWheel
8 Wheel wheelSize

11 enumeration Wheel { W14 w16 W18 W20 }
13 enumeration Color { Red Yellow }

15 behavior KidsBike {

16 combinations (supportWheel wheelSize)
17 allow (true (W14,wW16))
18 allow (false (W18,w20))

20

21 behavior KidsBike {

22 condition color = Yellow

23 require wheelSize = W18 || wheelSize = W20

24}

A.2. COOM N-OUT: Weighty Bike

The product weightyBike focuses on the calculation of the totalweight that is based on the
weight of the wheelSize and a fixed weight of the frame (frameweight). The computation
of the totalweight uses wheelwWeight and frameweight. The result is not used in any
constraint, which makes it independent from the solution space of possible valid configurations.

1 product {
WeightyBike weightyBike
3 }

5 structure WeightyBike {
6 WheelSize wheelSize
7 Weights weights

10 structure Weights {

1 num /gr wheelwWeight
12 num /gr framewWeight
13 num /gr totalweight

1 enumeration WheelSize {

17 // Attribute definitions
18 attribute num/inch size
19 attribute num/gr

weight

21 // Choice values of the type

22 w14
23 w16
24 w18
25 w20
26 w22
27 w24
28 W26
29 w28

(

A A AAAAA

14
16
18
20
22
24
26
28

>

550
550
600
650
700
800
900
1000

> behavior Weights {

33 imply frameWeight
34 imply wheelWeight

36 imply totalweight

= 10000
= 2 * root.weightyBike.wheelSize.weight

= framewWeight + wheelWeight

A.3. COOM N-LIN: Comfort Bike

The product ComfortBike offers front and rear bags, that come in different sizes and weights,
respectively. Since this bike focuses on comfort, it also offers a suspension, that can be configured
based on the expected weight of the bike. The total weight is calculated based on the weights of
the rider and the bags. The value of the total weight is then used in a constraint stating that the
possible weight of the suspension should be compatible with the expected total weight. Since,
the computed value is based on a sum, the calculation is a linear equation.

1 product {
2 ComfortBike comfortBike

'

4

5 structure ComfortBike {

6 FrontBag frontBag

7 RearBag rearBag
8 Suspension suspension

9 num /kg riderWeight
10 num /kg totalweight

13 enumeration FrontBag {
14 attribute num /kg maxWeight

16 small =(5)
17 medium = (10)
18 large = (15)

21 enumeration RearBag {
22 attribute num /kg maxWeight

24 small = (10)
25 medium = (15)
(25)

26 large =

20 enumeration Suspension {
30 attribute num /kg minwWeight
31 attribute num /kg maxWeight

33 sl = (0 120)

34 s2 (120 135)

37 behavior ComfortBike {
38 default riderWeight = 100
39 imply totalwWeight = (riderWeight + frontBag.maxWeight + rearBag.maxWeight)

0}

11

2 behavior ComfortBike {

43 require (totalWeight > suspension.minwWeight)
44 require (totalWeight <= suspension.maxWeight)
5}

A.4. COOM N-FULL: Sunday Bike

The product SundayBike is made for relaxing Sunday rides. It calculates the
effectiveTopTubeLength that is based on the value of the reach, stack, and
seatTubeAngle. The computation of the seatTubeAngle uses the tan(seatTubeAngle),
which makes it a non-linear computation.

Subsequently, a requirement exists, that the bag of the top tube needs to be smaller
than the value of the effectiveTopTubeLength, i.e., (topTubeBag.length + 30) <
effectiveTopTubeLength. This constraint influences the solution space of possible valid
configurations.

1 product {

2 SundayBike sundayBike

5 structure SundayBike {

6 num /mm reach

7 num /mm stack

8 num /mm seatTubeAngle

9 num /mm effectiveTopTubeLength
10 TopTubeBag topTubeBag

13 enumeration TopTubeBag {
14 attribute num /mm length

16 short = (550)
17 middle = (600)
18 long = (650)

21 behavior SundayBike {

22 default reach = 470

23 default stack = 600

24 default seatTubeAngle = 73

25 imply effectiveTopTubeLength = reach + (stack / tan(seatTubeAngle))

2 behavior SundayBike {
29 require (topTubeBag.length + 30) < effectiveTopTubeLength

A.5. COOM C-FIX: Shopping Bike

The product ShoppingBike needs to carry a lot of shopping items and therefore offers exactly
two instances of the Bag type for the front and exactly three instances of the Bag type for the
rear. The constraint states, that the sizes of the two front bags need to be equal to each other.

1 product {
ShoppingBike shoppingBike
,;}
4
5 structure ShoppingBike {
6 2 Bag frontBag
7 3 Bag rearBag
5}
10 structure Bag {
11 Color color
12 Size size

13}

15 enumeration Color { Green Blue Red }

17 enumeration Size {

18 small = (10 12)
19 medium = (15 16)
20 large = (25 20)
2}

3 behavior ShoppingBike {
24 require frontBag[0].size = frontBag[1l].size
25}

A.6. COOM C-USER: City Bike

The product CityBike is designed to be very safe on the road and therefore offers an extensive
configuration of spoke reflectors for the wheels. In principle, it is possible to configure at
maximum 99 reflectors per wheel, but during the configuration process the user has to specify
the concrete amount of instances.

1 product {
2 CityBike cityBike

5 structure CityBike {
6 Wheel frontwheel
Wheel rearWheel

10 structure Wheel {
11 0..99 SpokeReflectors spokeReflectors

14+ structure SpokeReflectors {
15 ReflectorType type
16 Color color

19 enumeration ReflectorType { oval thin }

21 enumeration Color { Green Blue Red }

A.7. COOM C-OPEN: Cargo Bike

The CcargoBike specializes in transporting luggage. The user enters the desired totalvolume
and totalWeight of the items to be transported. Subsequently, the reasoner calculates the
required number of Bag instances with their respective sizes.

In the knowledge behavior definition we see that the sum over all instances of
bags.size.maxWeight is compared with the user entered value totalweight. This also
holds forbags.size.volume and totalvolume. Here, we compute the sum over all currently
existing instances since no concrete index is given.

With this knowledge the reasoner must generate a sufficient number of Bag instances,
each with its corresponding size, to ensure that the equations are satisfied. To guide the
reasoner during this process of instance generation, we include the optimization statement
minimize countBags. This directive aims to generate the least amount of bags that still
satisfies totalWeight and totalvolume.

1 product {

2 CargoBike cargoBike

s}

4

5 structure CargoBike {

6 num /kg totalweight
7 num /1 totalvolume
8 num countBags

9 0..99 Bag bags

12 structure Bag {
13 Color color
14 Size size

17 enumeration Color { Green Blue Red }
19 enumeration Size {

20 attribute num maxWeight
21 attribute num volume

23 small = (10 12)
2 medium = (15 16)
25 large = (25 20)

23 behavior CargoBike {
29 require sum(bags.size.volume) >= totalVolume
30 require sum(bags.size.maxWeight) >= totalWeight

33 behavior CargoBike {
34 imply countBags = count(bags)
35 minimize countBags

A.8. COOM D-BASE: White Bike

The whiteBike allows for three different colors, but is assigned to Wwhite by default, if no
other value is manually chosen. The user (or constraints) are able to set the color to a different

value.
1 product {
2 WhiteBike whiteBike
3

4
5 structure WhiteBike {
6 Color color

9 enumeration Color { White Black Red }

11 behavior WhiteBike {
12 default color = White

13}

A.9. COOM D-COND: Poor Light Bike

The PoorLightBike automatically chooses the color white in case the user wants to configure
the bike without lights. This way, the bike is at least a little more visible in the dark thanks to

its color.

1 product {
2 PoorLightBike poorLightBike
3}

1

5 structure PoorLightBike {

6 bool lights

Color color

10 enumeration Color { White Black Red }

12 behavior PoorLightBike {
13 condition lights = false
14 default color = White

5}

	1 Introduction
	2 Smart Product Configuration
	2.1 The Solution Space in Product Configuration
	2.2 Elements of Smart Product Configuration

	3 Product Configuration Profiles
	3.1 Basic Syntax of COOM
	3.2 Applications of Product Configuration Profiles
	3.3 The CORE Profile
	3.4 Handling of Numerical Constraints (N)
	3.5 Handling of Cardinalities (C)
	3.6 Handling of Defaults (D)

	4 Conclusions
	A The Bike Family: Profile Examples in COOM
	A.1 COOM Core: KidsBike
	A.2 COOM N-OUT: Weighty Bike
	A.3 COOM N-LIN: Comfort Bike
	A.4 COOM N-FULL: Sunday Bike
	A.5 COOM C-FIX: Shopping Bike
	A.6 COOM C-USER: City Bike
	A.7 COOM C-OPEN: Cargo Bike
	A.8 COOM D-BASE: White Bike
	A.9 COOM D-COND: Poor Light Bike

