Enhancing Cybercrime Investigations by Integrating
RAKE and Case-Based Reasoning with Text
Comparison Algorithms

Marc Krager>>*!

IStiftung Universitit Hildesheim Universititsplatz 1 31141 Hildesheim, Germany

Abstract

Cybercrime investigations require the efficient handling and analysis of extensive unstructured data to
identify patterns and solve cases. This research explores the integration of Rapid Automatic Keyword
Extraction (RAKE) with Case-Based Reasoning (CBR) systems, employing text comparison algorithms
to enhance investigative processes. RAKE is utilized to extract significant keywords from textual data,
enabling effective summarization and indexing of documents such as incident reports, witness statements,
and digital evidence. CBR leverages historical cases to inform the resolution of new cases by identifying
similarities and drawing on past knowledge.

The integration of RAKE and CBR, supported by text comparison algorithms, facilitates the automated
extraction of keywords and the comparison of new cases with historical data. This approach aids in
uncovering patterns, identifying repeat offenders, and suggesting investigative paths. By accurately
assessing the relevance and similarity of cases based on extracted keywords, the system improves the
efficiency and effectiveness of cybercrime investigations.

This paper examines the potential of combining RAKE and CBR in the context of cybercrime, detailing
the implementation of text comparison algorithms to enhance case matching and analysis. The benefits,
challenges, and practical applications of this integrated approach are discussed, highlighting its capacity
to transform the investigative landscape and improve outcomes in combating cybercrime.

Keywords
Cybercrime, Case-based reasoning, Text-based algorithms, Comparative analysis, Textual evidence,
Investigation methods, Profiling, Artifical Intelligence

1. Introduction

The digital age has ushered in an era where data proliferates at unprecedented rates, a phe-
nomenon that has significantly increased the complexity and scope of cybercrime [1]. This rise
in data-centric criminal activities necessitates advanced tools for cybercrime investigations,
particularly in the domain of text analysis, where the ability to quickly and accurately assess
textual similarity is crucial for effective law enforcement.

1.1. Problem Identification

The rising prevalence of cybercrime poses significant challenges to law enforcement agencies
and cybersecurity professionals worldwide. Among the primary hurdles is the efficient and

LWDA’24: Lernen, Wissen, Daten, Analysen. September 23-25, 2024, Wiirzburg, Germany

& krueger.hannover@t-online.de (M. Kriiger)

© 2024 Copyright © 2024 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
#7 == CEUR Workshop Proceedings (CEUR-WS.org)

mailto:krueger.hannover@t-online.de
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

accurate analysis of large volumes of unstructured text data, such as emails, chat logs, and web
content, which are often critical in investigations. Existing text comparison algorithms, while
useful, fall short in several key areas critical to cybercrime investigation.

Firstly, the conventional text similarity measures, such as Cosine Similarity and Jaccard Index,
typically require pre-defined thresholds and do not adapt well to the dynamic nature of language
used in cyber communications. These measures often struggle with the nuances of semantic
meaning, slang, and obfuscation techniques employed by cybercriminals.

Secondly, the scalability of these algorithms is a concern. Cybercrime investigations can
involve terabytes of data, and existing algorithms do not always perform efficiently at this scale.
Processing times can be prohibitive, leading to delays in investigations and the potential loss of
critical evidence.

Lastly, the issue of false positives and false negatives significantly impacts the effectiveness
of current text similarity measures. Inaccuracies in identifying relevant documents can lead to
wasted resources in following non-relevant leads or, conversely, missing crucial information.

The goal of this research is to address these shortcomings by developing a new text similarity
algorithm that improves accuracy, efficiency, and adaptability in the context of cybercrime
investigations. This algorithm aims to better capture semantic nuances and operate effectively
at a large scale, thereby supporting faster and more accurate investigations.

1.2. Research Objectives

This research aims to significantly enhance the capability of cybercrime investigation tools
by integrating RAKE with Case-Based Reasoning (CBR) systems. The primary objective is
to develop and evaluate a sophisticated framework that utilizes advanced text comparison
algorithms to improve the identification, extraction, and analysis of relevant information from
vast unstructured data sets in cybercrime cases. By leveraging the strengths of RAKE for efficient
keyword extraction and CBR for utilizing historical case data, this study seeks to enable a more
systematic and accurate matching of new cases with past incidents. Ultimately, the research
will assess the effectiveness of this integrated approach in accelerating the investigative process,
increasing accuracy in crime pattern recognition, and facilitating quicker resolution of cases.

2. Related work

The integration of natural language processing (NLP) techniques and CBR systems has been
a topic of interest in various domains, including legal, medical, and forensic fields [8]. This
section reviews existing literature and research efforts related to the use of RAKE and CBR,
with a focus on their application in cybercrime investigations. RAKE has been widely used for
its ability to efficiently extract significant keywords from large text corpora. Its application
in forensic analysis has been demonstrated in studies such as [9], where RAKE was used to
process forensic reports, facilitating the identification of crucial evidence quickly. Similarly,
Shekar and Cottam [10] applied RAKE in contextual lexicon graph generation by using the
White Collar Crime Lexicon. CBR systems have a rich history in legal and forensic applications.
For instance, Aamodt and Plaza [5] introduced foundational concepts in CBR that have been
adapted for cybercrime investigations. The work by [11] detailed the implementation of CBR

in legal reasoning, highlighting its effectiveness in case matching and decision support. In
cybercrime, [12] developed a CBR system to assist in digital forensics, leveraging past cases to
identify patterns and suggest investigative actions. Text comparison algorithms play a critical
role in enhancing the effectiveness of CBR systems and have some challenges like different
languages or texts by non-natives English speakers [13]. Techniques such as cosine similarity,
Jaccard index, and semantic similarity measures have been employed to compare textual data
accurately. [14] introduced an overview of text comparison, which have since been refined and
applied in various CBR systems. [15] provided comprehensive coverage on information retrieval
techniques, including text similarity measures, which are crucial for matching cases in CBR
systems. The integration of RAKE and CBR is relatively nascent but promising. [16] discussed
the potential of combining keyword extraction techniques with CBR to improve case retrieval
efficiency. Recent studies, such as [17], explored the synergy between forensic science and Al
in handling unstructured data for forensic analysis, demonstrating improved outcomes in case
matching and investigation. Cybercrime investigations benefit significantly from advanced data
processing techniques [18]. [19] reviewed methods for automating cyber forensics, emphasizing
the importance of keyword extraction and case-based reasoning. [20] highlighted the use of
text mining and CBR in analyzing cybercrime patterns, underlining the potential for these
technologies to streamline investigations. The body of existing work underscores the value of
RAKE and CBR individually in forensic and cybercrime contexts. However, the combined appli-
cation of these techniques, particularly with advanced text comparison algorithms, represents
an innovative approach with significant potential to enhance cybercrime investigations. This
research builds on these foundations, proposing an integrated system to improve the efficiency
and effectiveness of handling cybercrime cases.

3. Methodology

This section details the methodology employed to RAKE with CBR systems using text com-
parison algorithms to enhance cybercrime investigations. The methodology encompasses data
collection, keyword extraction, case retrieval, and text comparison, as well as the system archi-
tecture and evaluation metrics used to assess the effectiveness of the proposed approach. The
initial step involves the collection of cybercrime-related data, including incident reports, digital
evidence, witness statements, and investigation summaries. The dataset used in this research
comprises both publicly available cybercrime case records and anonymized reports from law
enforcement agencies. This diverse dataset ensures a comprehensive representation of various
cybercrime scenarios, enhancing the robustness of the system.

3.1. Keyword Extraction using RAKE And Case Retrieval

RAKE is used to extract key terms from text data through the following steps:

» Preprocessing: Standardize text by tokenizing, removing stop-words, and stemming.
« Keyword Identification: Extract candidate keywords based on frequency and co-
occurrence.

+ Score Calculation: Assign scores to keywords; select those with the highest relevance.

The process involves:

« Case Representation: Define cases with features such as keywords, metadata, and

outcomes.

» Indexing: Index cases by keywords for efficient retrieval.

« Similarity Assessment: Extract and compare keywords from new cases to indexed ones.

« Retrieval and Adaptation: Retrieve similar cases and adapt their solutions to the new

case.

3.2. Text Comparison Algorithms

This section presents an overview of various text comparison algorithms used to assess simi-
larities between textual data (see table 1 and table 2). Table 1 includes algorithms focused on
semantic and vector space models, such as Doc2Vec, GloVe, fastText, and Word2Vec, which
generate or utilize embeddings to capture text context and semantics, along with phonetic
algorithms like SoundEx and Monge-Elkan used for phonetic and approximate string matching,.
Table 2 presents algorithms for measuring text similarity and distance, including Cosine Simi-
larity, Jaccard Index, Jaro-Winkler, Levenshtein Distance, Fuzzy Score, and Hamming Distance,
as well as advanced NLP models like ChatGPT, which provides sophisticated context-aware
text comparisons using deep learning.

Table 1

Comparison of Advanced Text Comparison Algorithms (Part 1)

Algorithm

Advantages

Disadvantages

Doc2Vec

Captures document-level context and
semantics, allowing for meaningful
comparisons between documents.

Requires significant computational re-
sources and training data; less effective
with small datasets or highly special-
ized text.

GloVe

Provides rich semantic representa-
tions by aggregating global word co-
occurrence statistics; pre-trained mod-
els are available.

Does not capture word order; requires
extensive memory and resources for
training.

fastText

Handles subword information, making
it robust to out-of-vocabulary words
and misspellings; effective for morpho-
logically rich languages.

Slightly more complex to implement
and fine-tune compared to Word2Vec;
less effective at capturing sentence-
level semantics.

Word2Vec

Efficient method for generating word
embeddings based on context; captures
word meanings effectively.

Limited to word-level semantics; strug-
gles with out-of-vocabulary words or
rare terms.

SoundEx

Useful for phonetic matching, espe-
cially in name matching tasks.

Limited to phonetic similarity; less ef-
fective for non-English languages or nu-
anced differences.

Monge-Elkan

Computes average similarity between
elements of two sets; useful for match-
ing strings.

Less commonly used; can be complex
to implement and interpret.

Table 2

Comparison of Advanced Text Comparison Algorithms (Part 2)

Algorithm

Advantages

Disadvantages

Cosine Similarity

Simple and effective for comparing
document vectors in high-dimensional
spaces; works well with sparse vectors.

Does not consider word order; may be
less effective for very short documents
or nuanced comparisons.

Jaccard Index

Provides a straightforward measure
for set-based similarity; useful for
keyword-based comparisons.

Does not account for term frequency;
may be less effective for overlapping
but not identical keywords.

Jaro-Winkler

Effective for comparing strings with
typographical errors; useful for name
matching and data deduplication.

Less useful for semantic similarity; pri-
marily focused on typographical errors
and string similarity.

Levenshtein

Measures the minimum number of
single-character edits needed to trans-
form one string into another; useful for
spelling corrections.

Computationally expensive for long
strings; does not capture semantic
meaning.

Fuzzy Score

Handles approximate matches and vari-
ations; useful for dealing with typos.

Less precise in capturing semantic
meaning compared to embedding-
based methods; may not be suitable
for all applications.

Hamming Distance

Simple and fast for fixed-length strings;
measures character-by-character dif-
ferences.

Limited to strings of equal length; does
not account for semantic similarity or
context.

ChatGPT

Provides deep contextual embeddings
and sophisticated text comparison; ef-
fective for nuanced understanding.

Requires APl access or significant com-
putational resources; may be overkill
for simpler text similarity tasks.

These algorithms ensure a comprehensive and nuanced comparison of cases, improving the
accuracy of case retrieval and matching. Each method has its strengths and weaknesses, which
are reflected in their respective performance metrics.

3.3. System Architecture

The proposed system architecture integrates RAKE and CBR within a modular framework. Key

components include:

« Data Preprocessing Module: Handles text standardization, tokenization, and cleaning.
» Keyword Extraction Module: Implements the RAKE algorithm to extract and score

keywords.

« Case Database: Stores historical cases with indexed keywords and metadata.

« Similarity Assessment Module: Utilizes text comparison algorithms to evaluate case

similarity.

+ Case Retrieval and Adaptation Module: Retrieves relevant cases and suggests adapted
solutions for new investigations.

The architecture is designed to be scalable and flexible, allowing for the integration of
additional data sources and algorithms as needed.

3.4. Evaluation Metrics

Evaluating the performance of keyword extraction methods is essential for understanding
their effectiveness and comparing different algorithms. This chapter discusses the evaluation
metrics, focusing on the following metrics: Mean, Median, Standard Deviation, Minimum, and
Maximum.

« Mean: The mean is the average value of the similarity scores obtained using each method.
It is calculated by summing all the scores and dividing by the number of scores. The mean
provides a central value that represents the overall performance of each method.

L
Mean = N ; i (1)

where N is the total number of scores and x; represents each individual score.

« Median: The median is the middle value of the similarity scores when they are arranged
in ascending order. If the number of scores is even, the median is the average of the two
middle numbers. The median is less sensitive to outliers compared to the mean.

x(w) if N is odd
Median = (EQ) (1) (2)
= if N is even

+ Standard Deviation: The standard deviation measures the amount of variation or
dispersion in the similarity scores. A low standard deviation indicates that the scores are
close to the mean, whereas a high standard deviation indicates a wide range of scores.

Standard Deviation = — Mean)? (3)

||Mz

« Minimum and Maximum: The minimum and maximum values indicate the range
of the similarity scores for each method. The minimum value is the lowest score, and
the maximum value is the highest score achieved by the method. These metrics help in
understanding the best and worst-case performance scenarios.

- Minimum = min(zy, z2,...,ZN)

- Maximum = max(z1,x2,...,TN)

The metrics of mean, median, standard deviation, minimum, and maximum provide a com-
prehensive evaluation of the performance of keyword extraction methods. By analyzing these
metrics, it can determine the overall effectiveness, consistency, and variability of each method.
Future research can build on these findings to further refine and improve keyword extraction
techniques.

3.5. Conclusion

This section outlines the methodology for integrating RAKE with CBR using text comparison
algorithms to enhance cybercrime investigations. The systematic approach to data collection,
keyword extraction, case retrieval, and similarity assessment ensures a robust and effective
system. The proposed architecture and evaluation metrics provide a solid foundation for
assessing and improving the system’s performance, ultimately contributing to more efficient
and accurate cybercrime investigations.

4. Implementation and Evaluation

This section describes the implementation details of the integrated RAKE-CBR system and
presents the results of experiments conducted to evaluate its performance. The implementation
details cover the development environment, system components, and integration process. The
results section provides an analysis of the system’s effectiveness based on the defined evaluation
metrics.

4.1. Development Environment

The development environment for the RAKE-CBR system is designed to ensure robustness
and efficiency. The system is implemented in Java, chosen for its stability and extensive
libraries supporting machine learning and database operations. Key libraries employed in the
development include Deeplearning4j, which is utilized for machine learning tasks, Apache
Commons Text for comprehensive text processing, and JDBC for seamless interaction with
MySQL databases. The MySQL database is used to store and manage case data effectively. The
development and testing processes are conducted on a machine equipped with an Intel Core i7
processor, 16GB of RAM, and a 512GB SSD to handle the computational demands.

4.2. System Components

The RAKE-CBR system is composed of several modular components, each serving a distinct
purpose. The Data Preprocessing Module is responsible for text cleaning, tokenization, stop-
word removal, and stemming, facilitated by Apache Commons Text. The Keyword Extraction
Module applies the RAKE algorithm to extract and score keywords from the preprocessed text.
A MySQL database functions as the Case Database, which contains 120 historical cases with
indexed keywords and associated metadata. The Similarity Assessment Module employs cosine
similarity, the Jaccard index, and semantic similarity measures via Deeplearning4j to compare
cases. Finally, the Case Retrieval and Adaptation Module retrieves similar cases and suggests
adapted solutions tailored to new investigations.

4.3. Conclusion

In summary, this chapter provides a comprehensive overview of the implementation and
evaluation of the RAKE-CBR system. The development environment is meticulously described,
highlighting the choice of programming language, libraries, tools, database, and hardware

that form the backbone of the system. The modular components of the RAKE-CBR system
are detailed, including data preprocessing, keyword extraction, case management, similarity
assessment, and case retrieval. The integration process illustrates how the system processes
and handles new cases to provide relevant solutions. Finally, the results section emphasizes
the system’s performance, evaluating its accuracy, speed, and solution relevance. Overall,
the RAKE-CBR system demonstrates a robust approach to case-based reasoning enhanced by
advanced text processing and similarity assessment techniques, offering valuable insights into
its effectiveness and practical application.

5. Results

Text similarity measurement employs a variety of methods. Edit-based methods, such as
Hamming distance and Levenshtein distance, compare strings character by character. Hamming
distance is suitable for strings of the same length, while Levenshtein distance can handle strings
of different lengths but is computationally intensive. The Jaro-Winkler distance, another edit-
based method, accounts for character transpositions and considers string prefixes and suffixes.
Fuzzy Score is a faster edit-based method but does not consider character positions within
strings.

Token-based methods, such as Jaccard Similarity and Cosine Similarity, operate at the word
or token level. Jaccard similarity evaluates the similarity of word groups, ignoring word order
but penalizing changes in individual words. Cosine similarity addresses Jaccard’s limitations by
converting tokens into vectors, providing a more robust similarity measure. Hybrid methods, like
Monge-Elkan, combine edit-based and token-based approaches to enhance accuracy, leveraging
the strengths of both methods.

Phonetic methods, such as SoundEx, are designed for words that sound similar but are spelled
differently, taking into account the phonetic representation of words. However, SoundEx only
considers the initial letters and is language dependent.

Word embeddings are crucial in NLP and machine learning, representing words in a machine-
understandable way by capturing semantic and contextual information. Word2Vec is a widely
used method known for good results with limited training data, especially using the skip-
gram model, though it has a high computational cost and represents individual words without
considering the document context. Doc2Vec, on the other hand, considers entire document
contexts, making it suitable for document-level tasks but still limited to the words within the
corpus. FastText is known for its processing speed and multilingual capability, representing
words inside and outside the training corpus. GloVe balances computational efficiency with
contextual understanding but also mainly represents words within the corpus.

Based on the extracted keywords by Rake the follwing results can be shown (Table 3)

5.1. Result Summary

The table presents the similarity scores obtained using various methods for extracting Rake
keywords. Below is a summary of the results for each method:

+ Doc2Vec achieved a mean score of 0.590 with a median of 0.600, indicating a relatively

Table 3
Calculation of Similarity Score based on extracted Rake Keywords

Method Mean | Median | Standard Deviation | Minimum | Maximum
Doc2Vec 0.590 0.600 0.196 0.538 0.842
GloVe 0.379 0.381 0.263 0.037 4911
fastText 0.736 0.757 0.182 0.047 0.929
Word2Vec 0.405 0.431 0.256 0.291 0.515
SoundEx 0.079 0.000 0.244 1.000 3.000
Monge-Elkan 0.394 0.377 0.240 0.323 0.743
Cosine 0.272 0.154 0.273 0.096 0.401
Jaccard 0.418 0.447 0.203 0.570 0.955
Jaro-Winkler 0.576 0.619 0.283 0.542 0.700
Levenshtein 0.632 0.643 0.246 26.000 68.000
Fuzzy Score 0.187 0.133 0.198 1.000 16.000
Hamming 0.271 0.154 0.273 0.010 0.408
ChatGPT 0.537 0.533 0.310 10.000 85.000

consistent performance, as shown by its standard deviation of 0.196. The scores ranged
from a minimum of 0.538 to a maximum of 0.842.

» GloVe produced a lower mean of 0.379 and a median of 0.381, with a high standard
deviation of 0.263, reflecting significant variability. The scores varied widely, from 0.037
to 4.911, suggesting some outlier influence.

» fastText outperformed the others with a mean of 0.736 and a median of 0.757, accom-
panied by a standard deviation of 0.182. This method had scores ranging from 0.047 to
0.929, indicating strong consistency.

« Word2Vec yielded a mean of 0.405 and a median of 0.431, with a notable standard devi-
ation of 0.256. The minimum and maximum scores were 0.291 and 0.515, respectively.

« SoundEx displayed the lowest mean score of 0.079 and a median of 0.000, with high
variability (SD = 0.244) and an anomalous minimum of 1.000, which may indicate an
error in data reporting.

« Monge-Elkan recorded a mean of 0.394 and a median of 0.377, showing moderate
variability (SD = 0.240), with scores ranging from 0.323 to 0.743.

« Cosine scored a mean of 0.272 and a median of 0.154, reflecting low performance and
high variability (SD = 0.273), with scores between 0.096 and 0.401.

« Jaccard achieved a mean of 0.418 and a median of 0.447, with lower variability (SD =
0.203) and scores ranging from 0.570 to 0.955.

« Jaro-Winkler produced a mean of 0.576 and a median of 0.619, with a standard deviation
of 0.283, indicating good consistency within a range from 0.542 to 0.700.

« Levenshtein scored a mean of 0.632 and a median of 0.643, with a standard deviation
of 0.246. However, it had an unusually high range with a minimum of 26.000 and a
maximum of 68.000.

« Fuzzy Score had a mean of 0.187 and a median of 0.133, along with a high standard
deviation of 0.198, with scores ranging from 1.000 to 16.000.

« Hamming showed a mean of 0.271 and a median of 0.154, consistent with a high
standard deviation of 0.273, with values from 0.010 to 0.408.

+ ChatGPT recorded a mean of 0.537 and a median of 0.533, reflecting high variability
(SD = 0.310) with scores ranging from 10.000 to 85.000.

Overall, fastText stands out as the most effective method in terms of similarity scoring,
followed by Doc2Vec and Levenshtein. In contrast, methods such as SoundEx and Cosine
exhibited poor performance, highlighting the importance of choosing the right method for
keyword extraction tasks.

5.2. Conclusion

The analysis of text similarity methods shows significant performance variations. Edit-based
methods like Hamming and Levenshtein distances compare characters, with Hamming suited
for equal-length strings and Levenshtein handling different lengths. Jaro-Winkler improves on
these by considering character transpositions, while Fuzzy Score offers faster but less precise
results. Token-based methods, such as Jaccard and Cosine Similarity, operate at the word level.
Jaccard compares word groups without considering order, while Cosine Similarity uses vector
representations for a more nuanced measure. Hybrid methods like Monge-Elkan combine these
approaches. Phonetic methods, such as SoundEx, match phonetically similar words but are
limited by language dependence and focus on initial letters. Among word embeddings, fastText
is the most effective, followed by Doc2Vec and Levenshtein Distance. Word2Vec and GloVe
provide good results with different strengths in handling context and training data. Conversely,
SoundEx and Cosine Similarity performed poorly, emphasizing the need for careful method
selection in keyword extraction and similarity tasks.

6. Conclusions and Future Work

While the current study has provided valuable insights into various similarity scoring methods,
there remains significant potential for further research, particularly in improving keyword
extraction techniques such as RAKE. The following areas are suggested for future investigation:

« Enhanced Preprocessing Techniques: Improving the preprocessing steps, such as
tokenization, stemming, and stopword removal, can significantly enhance the quality
of the extracted keywords. Future research could explore advanced NLP techniques to
refine these steps.

« Integration with Other Algorithms: Combining RAKE with other keyword extraction
algorithms like TF-IDF, TextRank, or even supervised learning methods could yield more
robust results. Investigating hybrid approaches that leverage the strengths of multiple
algorithms may improve accuracy and relevance.

« Parameter Optimization: The performance of RAKE can be sensitive to its parameters,
such as the frequency threshold for candidate keywords. Research into optimal parameter
settings through methods like grid search or evolutionary algorithms could lead to better
performance.

Context-Aware Modifications: Enhancing RAKE to consider the context in which
keywords appear could improve its ability to identify relevant terms. Techniques such
as context-aware embeddings or semantic analysis could be integrated to capture the
nuanced meanings of words.

Handling Multilingual Texts: Extending RAKE to effectively handle multilingual
documents can broaden its applicability. Future research could focus on adapting RAKE
to different languages and scripts, potentially through the use of multilingual embeddings.
Evaluating Against Large Datasets: Conducting extensive evaluations of RAKE and
its improved versions on large and diverse datasets can provide a more comprehensive
understanding of its strengths and weaknesses. Benchmarking against standardized
datasets will help in assessing its generalizability.

Real-time Applications: Investigating the application of RAKE in real-time systems,
such as social media monitoring or live chat analysis, can reveal practical challenges
and opportunities for optimization. Research in this area could focus on improving the
efficiency and scalability of RAKE.

User Feedback Integration: Incorporating user feedback into the keyword extraction
process can help refine the relevance and accuracy of the results. Future research could
explore interactive RAKE systems that learn from user inputs to improve over time.

By addressing these areas, future research can contribute to the development of more effective
and versatile keyword extraction methods, enhancing their utility in various natural language
processing applications.

References

(1]
(2]

(3]

(6]
(7]

M. Kriiger, An approach to profiler detection of cyber attacks using case-based reasoning.,
in: LWDA, 2022, pp. 234-245.

T. Pay, S. Lucci, Automatic keyword extraction: An ensemble method, in: 2017 IEEE
International Conference on Big Data (Big Data), 2017, pp. 4816-4818. doi:10.1109/
BigDhata.2017.8258552.

M. G. Thushara, T. Mownika, R. Mangamuru, A comparative study on different keyword
extraction algorithms, in: 2019 3rd International Conference on Computing Methodologies
and Communication (ICCMC), 2019, pp. 969-973. d0i:10.1109/ICCMC.2019.8819630.
K. Yuan, H. Lu, X. Liao, X. Wang, Reading thieves’ cant: Automatically identifying and
understanding dark jargons from cybercrime marketplaces, in: 27th USENIX Security
Symposium (USENIX Security 18), USENIX Association, Baltimore, MD, 2018, pp. 1027~
1041. URL: https://www.usenix.org/conference/usenixsecurity18/presentation/yuan-kan.
A. Aamodt, E. Plaza, Case-Based reasoning: foundational issues, methodological variations,
and system approaches, Al communications 7 (1994) 39-59. URL: https://doi.org/10.3233/
aic-1994-7104. doi:10.3233/aic-1994-7104.

K.-D. Althoff, Case-based reasoning, in: Handbook of Software Engineering and Knowledge
Engineering: Volume I: Fundamentals, World Scientific, 2001, pp. 549-587.

S. Kapetanakis, A. Filippoupolitis, G. Loukas, T. S. Al Murayziq, Profiling cyber attackers
using case-based reasoning (2014).

http://dx.doi.org/10.1109/BigData.2017.8258552
http://dx.doi.org/10.1109/BigData.2017.8258552
http://dx.doi.org/10.1109/ICCMC.2019.8819630
https://www.usenix.org/conference/usenixsecurity18/presentation/yuan-kan
https://doi.org/10.3233/aic-1994-7104
https://doi.org/10.3233/aic-1994-7104
http://dx.doi.org/10.3233/aic-1994-7104

(8]
(9]

[10]

[11]

[12]

[13]

M. Kriiger, Comparative analysis of text-based cbr algorithms for cybercrime profiling
investigations., in: LWDA, 2023, pp. 347-358.

S. Rose, D. Engel, N. Cramer, W. Cowley, Automatic keyword extraction from individual
documents, Text Mining: Applications and Theory (2010).

M. C. Shekar, J. A. Cottam, Graph generation with a focusing lexicon, in: 2019 IEEE
International Conference on Big Data (Big Data), 2019, pp. 4928-4931. doi:10.1109/
BigData47090.2019.9006568.

I. Watson, Applying case-based reasoning: Techniques for enterprise systems, Morgan
Kaufmann, 1997.

M. R. Al-Mousa, Analyzing cyber-attack intention for digital forensics using case-
based reasoning, CoRR abs/2101.01395 (2021). URL: https://arxiv.org/abs/2101.01395.
arXiv:2101.01395.

K. Amin, S. Kapetanakis, K.-D. Althoff, A. Dengel, M. Petridis, Answering with cases: A cbr
approach to deep learning, in: M. T. Cox, P. Funk, S. Begum (Eds.), Case-Based Reasoning
Research and Development, Springer International Publishing, Cham, 2018, pp. 15-27.

[14] J. Wang, Y. Dong, Measurement of text similarity: A survey, Information 11 (2020). URL:

[15]

[16]

[17]

[18]

[19]

[20]

https://www.mdpi.com/2078-2489/11/9/421. d0i:10.3390/inf011090421.

M. Eminagaoglu, A new similarity measure for vector space models in text classification
and information retrieval, Journal of Information Science 48 (2022) 463-476.

K. Venkatesh Raja, R. Siddharth, S. Yuvaraj, K. Ramesh Kumar, An artificial intelli-
gence based automated case-based reasoning (cbr) system for severity investigation and
root-cause analysis of road accidents — comparative analysis with the predictions of
chatgpt, Journal of Engineering Research (2023). URL: https://www.sciencedirect.com/
science/article/pii/S2307187723002237. doi:https://doi.org/10.1016/j.jer.2023.
09.019.

N. H. Hamzah, L. X. Sim, G. F. Gabriel, K. Osman, N. M. M. Isa, Artificial intelligence
in forensic science: Current applications and future direction, Buletin Sains Kesihatan 6
(2022) 39-46.

W. A. Al-Khater, S. Al-Maadeed, A. A. Ahmed, A. S. Sadig, M. K. Khan, Comprehensive
review of cybercrime detection techniques, IEEE Access 8 (2020) 137293-137311. doi:10.
1109/ACCESS.2020.3011259.

G. Michelet, F. Breitinger, G. Horsman, Automation for digital forensics: Towards a
definition for the community, Forensic Science International 349 (2023) 111769.

M. L. Han, B. I. Kwak, H. K. Kim, Cbr-based decision support methodology for cybercrime
investigation: Focused on the data-driven website defacement analysis, Security and
Communication Networks 2019 (2019) 1901548.

http://dx.doi.org/10.1109/BigData47090.2019.9006568
http://dx.doi.org/10.1109/BigData47090.2019.9006568
https://arxiv.org/abs/2101.01395
http://arxiv.org/abs/2101.01395
https://www.mdpi.com/2078-2489/11/9/421
http://dx.doi.org/10.3390/info11090421
https://www.sciencedirect.com/science/article/pii/S2307187723002237
https://www.sciencedirect.com/science/article/pii/S2307187723002237
http://dx.doi.org/https://doi.org/10.1016/j.jer.2023.09.019
http://dx.doi.org/https://doi.org/10.1016/j.jer.2023.09.019
http://dx.doi.org/10.1109/ACCESS.2020.3011259
http://dx.doi.org/10.1109/ACCESS.2020.3011259

	1 Introduction
	1.1 Problem Identification
	1.2 Research Objectives

	2 Related work
	3 Methodology
	3.1 Keyword Extraction using RAKE And Case Retrieval
	3.2 Text Comparison Algorithms
	3.3 System Architecture
	3.4 Evaluation Metrics
	3.5 Conclusion

	4 Implementation and Evaluation
	4.1 Development Environment
	4.2 System Components
	4.3 Conclusion

	5 Results
	5.1 Result Summary
	5.2 Conclusion

	6 Conclusions and Future Work

