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Abstract
Regulation often involves interdisciplinary considerations in disaggregated environments where knowl-
edge is only partially accessible. Case abstraction can be exploited to address communication and
collaboration tasks in a multilateral regulatory setting. In this work, we investigate how semantic
clusters defined by the abstracted experience knowledge coded in regulatory datasets can be transformed
into an agent-based model representing regulatory scenarios as sequential games. In this regard, we
contribute to the field of regulatory case-based reasoning and suggest a sequential regulatory case-based
agent model. We show how the combination of case-based and language-based reasoning fills gaps in
context-aware regulatory agent modeling. The approach is put into practice in the domain of nuclear
safety. Monte Carlo experiments suggest how the emergent information collected from configurable
games can be used to support humans working in a regulatory environment, such as predicting safety
budgets for disaggregated safety teams.
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1. Introduction

In a multilateral (involving several regulatory actors) and disaggregated regulatory scenario,
there exist parties that aim for regulation and parties who are affected by this ambition for
regulation. For instance, fire safety institutions, medical safety institutions, and governmental
institutions stand for such interest groups with coherent and concurrent ambitions. The
regulatory action of the one (regulatory measure) can become the impact (incident) of the
other [1]. Disaggregated means that a common goal exists in a group, but centralized data
management is unavailable. Practically, no common vocabulary is maintained, and information
may be (partially) private, so data science methods cannot be easily applied to all the data
involved.

The regulatory actions of the other actors have to be considered by each actor in their own
regulatory decisions. Involving several parties can lead to a non-linear and complex process as
every party aspires to reach different (unknown) regulatory goals for diverse (unknown) contex-
tual configurations of the environment. In this work, we present a way to create sequential [2]
regulatory Monte Carlo [3] experiments that simulate such regulatory scenarios as sequential
games to conclude, e.g., for resource planning.
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The abstraction into semantic regulatory concepts mitigates these shortcomings of dissaggre-
gation [4]. Efforts of regulatory semantification often do not incorporate all contextual aspects
of these effects due to the costs involved in creating and maintaining the connected regulatory
framework. We observed that case-based reasoning (CBR) methods open the door to support the
semantification process of regulatory data in multilateral and disaggregated environments. CBR
assists in climbing the knowledge pyramid from semantics over pragmatics to reasoning [5].
This enrichment allows actions to be added to knowledge to implement an active sequential
game.

This aim for a regulatory case-based reasoning (RCBR) approach stands between basic CBR
and process-oriented CBR [5]. The application of processes requires strict compliance of actors
in the process and a certain degree of predictability. This is not given in many regulatory
scenarios, and a fully process-oriented approach is not maintainable. In a regulatory case-based
reasoning setting, it is not always clear which distinct goals are to be reached. Nevertheless, the
relations and pseudo-causal order of regulatory concepts lead to pseudo-process characteristics
of the system.

In this work, we exploit a well-maintained and aggregated regulatory corpus from the domain
of nuclear safety to simulate a disaggregated environment. We aim to gain semantic and prag-
matic information by observing the effects emerging in these experiments. For instance, budget
allocation is challenging to address with normal semantification of texts, e.g., by extracting
entities and relations [4]. Imagine a setting where a fixed budget (financial, workforce, time) has
to be distributed over ten different safety teams with individual needs unknown by the other
teams. We show that a solely data-driven agent-based model (ABM) can simulate individual
demands and thus give pragmatic guidance, e.g., for demand planning.

1.1. Solution Approach

We set up on a regulatory case structure that can generalize to diverse regulatory domains [4].
Data clustering can be exploited to create (one possible) agent clustering. Agent policies can be
derived from each data cluster by creating an individual similarity assessment as the agent’s
utility function. We employ large language models (LLMs) to mitigate contextual problems
arising in disaggregated settings. To code new knowledge, we search for patterns in the
simulated sequence of applied cases and suggest excerpts for similar environments.

1.2. Contribution and Research Questions

With this work, we contribute to integrating CBR and large language models for the semantic
augmentation of existing regulatory data. We address the field of regulatory CBR and contribute
to its characterization. We investigate how data clustering can be used to create a distinct
agent-based simulation. We suggest how the emergent information gained from the simulation
can be added to the existing experience knowledge.



2. Related Work

Substantial work has been done on case-based agent modeling and distributed case-based
reasoning. This helps to integrate with state-of-the-art statistical language models. Asking large
language models for safety advice implies risks, such as relying on hallucinated facts, as stated
by Oviedo-Trespalacios et al. [6]. To automatically learn safety knowledge from past accidents
is an ideal scenario, which is still facing several shortcomings as addressed by Niu et al. [7].

The concept of a conversational multi-agent environment is yet taken up for practical applica-
tion as presented by Wu et al. [8]. A team of communicative agents is created based on LLMs to
achieve the task of collaborative software engineering by Qian et al. [9]. The critical evaluation
showed the pitfalls of the LLMs. Explainability of agent decisions is a crucial criterion of success
in the interaction of humans with agents.

Silva et al. [10] present an evaluation of factors that influence the teaming of humans with
agents. This work was tremendously helpful in the first design considerations of this work to
avoid common pitfalls from the beginning. Our goal is to set up an agent with knowledge based
on the data found in a corpus. A similar task is to transfer knowledge to an agent to reduce
training costs, which was addressed by Castagna and Dusparic [11]. The trust of humans in
AI-based moderation was investigated by Molina and Sundar [12]. A review of data-driven
accident prevention systems was presented by Assadzadeh et al. [13].

Tran and Schönwalder [14] present a work to integrate different knowledge sources for fault
management in communication networks into one case-based system and, therefore, introduce
a new step of "retention" into the classical CBR cycle. Pla et al. [15] present a case-based tool to
integrate different experts into a decision process. They developed a schema for the cooperative
communication of involved actors. How to personalize intelligent tutoring systems using case-
based reasoning and multi-agent systems was investigated by Gonzalez et al. [16]. Schneider
et al. [17] use generative artificial intelligence for athletic training education by developing
case-based scenarios with ChatGPT.

We analyzed current publications on collaborative crisis management to get insight into
aspects important to a successful approach. In their work to create an agent-based platform
for crisis management, Bhattacharya [18] faces a very similar scenario but presents a domain-
specific approach in opposition to our generalization ambitions.

A survey of scientific publications of the last decade towards agent-based models of human
response to natural hazards was collected by Mis et al. [19]. Their work helped assess important
features of successful agent modeling in the domain. Analogously, critical factors for successful
crisis management were aggregated by Bynander and Nohrstedt [20]. We assume these quality
factors are also important to set up an agent-based model in our context. Parker et al. [21]
present core assumptions. Yet, not up to current state-of-the-art still contributing worthy ideas
to the subject is the work of Balaraman et al. [22].



3. Methods - Regulatory Multi-Agent-Model

Regulatory texts can represent a collection of applied cases and can be re-clustered into such [4].
We assume that the given semantic clustering of the corpus into topic-related units and cases can
be considered analogously as a real-world clustering into coherently acting interest groups [4].
These and further assumptions are the foundation of the simplified regulatory agent model.

Assumptions: The experiment takes place in the "abstracted regulatory world". The real
world is abstracted into cases consisting of incidents (problem), measures (solution), their context,
and relations between them. We assume a sequential game [2] and that spatial information is
neglected. There is no quality in the time steps, like, e.g., a 24-hour cycle.

Each agent is defined by a semantic cluster representing a confined team and regulatory topic.
Measures and incidents last for the time step in which they are applied. Specific durations can
override this. For instance, the incident hurricane will last longer than an ordinary storm. Each
initial agent case base is generated from one semantic cluster.

We assume perfect knowledge of the agents regarding the regulatory actions of other agents;
the others’ actions are observable, but what stays hidden from the agents is the textual case
definition of other agents. We assume incomplete knowledge; the other agents’ individual
similarity (utility) function is unknown to each agent.

The agent’s actions are defined by the available measures. Each agent has a limited budget
for executing measures at a specific time step. The agent’s operations are to ADD, DELETE,
and SUBSTITUTE measures. The scope of incidents and measures is the entire world. An
agent is activated if a similar case to the current environment state is found in his case base.
To save computational resources, agents do not directly communicate; they only observe the
environment and then act. The agent learns by adding new cases to be incorporated into the
next semantic cluster version (retain step).

Definition 1 (Regulatory agent). Let 𝒜𝐶𝐵 = {𝒞ℬ1, ..., 𝒞ℬ𝑛} be n disjunct subsets of a case
base 𝒞ℬwith the previously described regulatory case structure. Let𝐴𝑖 = ⟨𝒞ℬ𝑖,𝐾𝐴𝑖, 𝑃𝐴𝑖, 𝐻𝐴𝑖⟩, 𝑖 ∈
[ 1, 𝑛] be an agent number i derived from the case cluster 𝒞ℬ𝑖 with knowledge 𝐾𝐴𝑖, the actions
𝑃𝐴𝑖 created out of 𝒞ℬ𝑖 and 𝐾𝐴𝑖, and a set of configuration hyper parameters 𝐻𝐴𝑖.

The environment has two purposes. It encapsulates what happens in the world apart from
agents’ behavior. Further, it tracks what agents contributed to the environmental history.
All agents can observe it. This facilitates a scenario where agents observe each other and
communicate directly. The environment is analogously defined as an agent derived from
semantic clusters or pre-processed external data sources in the following way.

Definition 2 (Environment). Let ℰ𝐶𝐵 = {𝒞ℬ𝑛+1, ..., 𝒞ℬ𝑚} : ∀ 𝒞ℬ𝑗 ∈ ℰ𝐶𝐵, 𝒞ℬ𝑗 /∈ 𝒜𝐶𝐵

be disjunct subsets of a case base 𝒞ℬ with the previously described case structure. Let ℰ𝑗 =
⟨𝒞ℬ𝑗 , 𝐻𝐸𝑗⟩, 𝑗 ∈ [𝑛+1,𝑚] be an environment number j derived from 𝒞ℬ𝑗 , a set of configuration
hyper parameters 𝐻𝑗 . Let 𝑒𝑡 ∈ ℰ𝑗 be a case presented by the environment at discrete time t.



We define the following similarity measures for these case, agent, and environment definitions.
The similarity assessment done by each agent when a new state 𝑒𝑡 ∈ 𝐸𝑗 of the environment is
presented is called primary similarity. The following notations are used in the definitions and
simulation algorithm:

1. 𝐴𝑆𝐸𝐿𝐹 = currently active agent
2. 𝐴𝑂𝑇𝐻𝐸𝑅𝑆 = currently non active agents
3. 𝑀(𝐴𝑖𝑡) = all measures an agent i placed at time step t
4. 𝐼(𝐴𝑖𝑡) = all incidents an agent i recognized at time step t
5. 𝑀(𝐸𝑡) = all actions observable by all agents at time t

Definition 3 (Prior Similarity Assessment). Let 𝑠𝑖𝑚𝑃𝑅𝐼𝑂𝑅(𝐴𝑖𝑡, 𝑒𝑡) be the similarity of the
Agent i to the environment state 𝑒𝑡 at time t plus the context 𝐶𝑇𝑋𝐴𝑖 𝑡 transformed into a vector
embedding by V(x). The agent is only activated if 𝑚𝑎𝑥(𝑠𝑖𝑚𝑃𝑅𝐼𝑂𝑅) of all agent’s cases 𝑐𝑎𝑖 exceeds
a threshold 𝛿. With 𝛿 ≥ 0 ∈ 𝐻𝐴𝑖 and dot(x) the dot-product of embedding vectors, similarities are
defined as:

𝑠𝑖𝑚𝑃𝑅𝐼𝑂𝑅(𝐴𝑖𝑡, 𝑒𝑡) = 𝑚𝑎𝑥(∀ 𝑐𝑎𝑖𝑑𝑜𝑡(𝑉 (𝑐𝑎𝑖 + 𝐶𝑇𝑋𝐴𝑖), 𝑉 (𝑒𝑡))) (1)

𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝐴𝑖) = 𝑡𝑟𝑢𝑒 𝑓𝑜𝑟 𝑠𝑖𝑚𝑃𝑅𝐼𝑂𝑅(𝐴𝑖, 𝑒𝑡) ≥ 𝛿 (2)

The cluster-context-specific similarity is derived by embedding the case description together
with a cluster-specific context 𝐶𝑇𝑋𝐴𝑖. This context can be, for instance, the document title, a
document summary, and semantic knowledge about the cluster. Consequently, every agent not
only has its own case base but also its own (slightly different) similarity measure to calculate
similarities. Further, the context can encompass simulation-specific information like past actions,
past environmental states, and predictions for the future that possibly influence the current
similarity assessment of the agent.

For the second step of similarity assessment, we borrow the concept of surprise from infor-
mation theory [23]. If an agent is surprised by the actions of other agents, he is more likely to
consider changes in his own actions. The logarithmic calculation of the surprise value leverages
the similarity gap between the prior similarity and the posterior similarity assessment.

Definition 4 (Posterior Similarity Assessment). Let 𝑠𝑖𝑚𝑃𝑂𝑆𝑇𝐸𝑅(𝐴𝑖𝑡, 𝑒𝑡−1) be the similar-
ity incorporating the actions of all other Agents 𝐴𝑂𝑇𝐻𝐸𝑅𝑆 done at t-1. Given 𝑠𝑖𝑚𝑃𝑂𝑆𝑇𝐸𝑅 >
𝑠𝑖𝑚𝑃𝑅𝐼𝑂𝑅 the agent will consider the secondary retrieval if the surprise about the best case
max(𝑠𝑖𝑚𝑃𝑂𝑆𝑇𝐸𝑅(𝐴𝑖𝑡, 𝑒𝑡−1)) exceeds a threshold 𝜎 ≥ 0 ∈ 𝐻𝐴𝑖 and add the new measures
retrieved for t-1 to the solution retrieved in t.

𝑠𝑖𝑚𝑃𝑂𝑆𝑇𝐸𝑅(𝐴𝑖𝑡, 𝑒𝑡−1) = 𝑚𝑎𝑥(∀ 𝑐𝑎𝑖𝑑𝑜𝑡(𝑉 (𝑐𝑎𝑖 + 𝐶𝑇𝑋𝐴𝑖+𝑀 ), 𝑉 (𝑒𝑡−1))) (3)

𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑒(𝐴𝑡, 𝑒𝑡−1) = − ln(1− 𝑠𝑖𝑚𝑃𝑂𝑆𝑇𝐸𝑅(𝐴𝑡, 𝑒𝑡−1)) (4)



With the previous definitions and assumptions, a first instantiated algorithm version can
be formalized by running the multi-agent model. It is initialized with the number of semantic
clusters used to create agents and the clusters used to define the environment. The embedding
process is not part of this algorithmic description as it is encapsulated in the retrieval process
and further discussed in Section 4.

At the beginning of each new step, the agents compare the actions taken one step before to
those of the other agents. A new retrieval incorporating measures of the other agents into the
posterior similarity assessment is executed. If the surprise calculated from the similarity gap
between prior and posterior similarity exceeds a threshold, then the secondary case solution is
preferred over the primary case solution, and additional measures are applied.

We facilitate this algorithm to a duration of measures of one time step. In a world where
measures last only one step, measures can only be added and need not be deleted or substituted.
The other agents then react to the changed actions of the agent in the next step. This leads to a
continuous indirect interaction of all the agents.

Algorithm 1 Regulatory Multi Agent Simulation with only ADDING Agents
Require: 𝛿, 𝜎 ≥ 0 for each agent

initialize population n 𝑎𝑔𝑒𝑛𝑡𝑠[𝐴1, .., 𝐴𝑛]← 𝐴𝐶𝐵

initialize 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝐸 ← 𝐸𝐶𝐵 (one environment)
initialize 𝑆𝑖𝑚𝑃𝑅𝐼𝑂𝑅 = 0, 𝑆𝑖𝑚𝑃𝑂𝑆𝑇𝐸𝑅 = 0, 𝑡 = 0
initialize 𝑒−1 = []
while 𝑡 < 𝑚𝑎𝑥𝑠𝑡𝑒𝑝𝑠 do

for 𝐴𝑖 ∈ [𝐴1, .., 𝐴𝑛] do
𝑀(𝐴𝑂𝑇𝐻𝐸𝑅𝑆(𝑡− 1))← 𝑒𝑡−1 ◁ check what other agents have done
bestCase = retrieve(𝐴𝑖, 𝑒𝑡−1, 𝐶𝑇𝑋(𝐴𝑂𝑇𝐻𝐸𝑅𝑆(𝑡− 1))
𝑀(𝐴𝑆𝐸𝐿𝐹 ) = M(bestCase)
𝑆𝑖𝑚𝑃𝑂𝑆𝑇𝐸𝑅 = Sim(bestCase)
if surprise(𝑆𝑖𝑚𝑃𝑂𝑆𝑇𝐸𝑅 - 𝑆𝑖𝑚𝑃𝑅𝐼𝑂𝑅) > 𝛿 then

POSTERIOR ACTIVATION = true
𝑒𝑡← ADD M(𝐴𝑆𝐸𝐿𝐹 ) ◁ lately add posterior measures

end if
𝑒𝑡 ← 𝐸 ◁ sample new environment state
bestCase = retrieve(𝐴𝑖, 𝑒𝑡, 𝐶𝑇𝑋(𝑡))
𝑀(𝐴𝑆𝐸𝐿𝐹 ) = M(bestCase)
𝑆𝑖𝑚𝑃𝑅𝐼𝑂𝑅 = Sim(bestCase)
if (𝑆𝑖𝑚𝑃𝑅𝐼𝑂𝑅) > 𝜎 then

PRIOR ACTIVATION = true
𝑒𝑡← ADD M(𝐴𝑆𝐸𝐿𝐹 ) ◁ add prior measures

end if
end for
𝑡 = 𝑡+ 1

end while



4. Results

We evaluated the presented agent model on a nuclear safety dataset created from a regulatory
corpus. This corpus was previously annotated and transformed into an according dataset
summing up to about 200,000 cases.

The corpus consists of 143 publicly available documents containing, in total, about 14,000
pages of English text published by the IAEA (International Atomic Energy Association), which is
a sub-organization of the United Nations [24]. The IAEA aims to regulate the domain of nuclear
safety internationally and gives advice and support to national authorities. All documents can
be accessed via their website [24]. Further information like the used regulatory knowledge
graph can be accessed via our website and github [25, 26].

Additionally, we used other datasets containing messages of people communicating during a
disaster like an earthquake, hurricane, and flooding [27]. We pre-processed these datasets in the
same manner as the nuclear safety documents, annotated regulatory concepts, and transferred
them into a queryable case base. These datasets served as external environments.

The size of the case base clusters created from the nuclear safety documents ranges from
approximately some hundred to some thousand cases per document cluster. Using only one
nuclear safety document as an environment allows a limited maximum step size without
repeating cases. The disaster datasets contain more than 10,000 ordered entries each, which
allows for a larger maximum simulation step size and chronological sampling.

4.1. Semantic Pre-Processing

From the textual corpus, a terminology was extracted and manually classified into incidents and
measures with several hierarchical layers. It contains concepts like fire, manualFireFighting,
and fireProtection.

Adding to the contextual influence in the agent’s case base created by the cluster-specific
LLM embeddings, each agent has a specific knowledge 𝐾𝑖 defined. This knowledge is derived
from the regulatory concepts covered by the respective semantic cluster and contextualized as
an LLM embedding.

Example 1 shows a detailed representation of one case and the highlighted features contained
in the textual description of the case.

(1) Case Example: Text = "For reactors equipped with vessel closure plugs to retain the fuel
in position, special design features should be provided to ensure that the probability of
ejection of the closure plug is low. In the absence of such special features, the consequences
of the failure or the ejection of a single closure plug should be evaluated as for a missile."
Case ID = S1.1001,
Context="Rules and Regulations for the safe transport of radioactive materials.",
Incidents = ejection, failure, missile,
Measures= evaluate, ensure, Cluster = S1



4.2. Observable Experiment Variables

As the agents are created from a given human-made regulatory framework, the goal is not
to train the agents to improve in the sense of a reinforcement agent. One experiment goal
is to add the next layer of semantification to gather (time series-related) information that is
not collectible by NLP methods. The other goal is to suggest cases to human users to improve
further regulatory texts to be created. The following variables are therefore observed in the
experiments to get insight and draw conclusions.

1. 𝑅𝐹𝑃𝑅𝐼𝑂𝑅(𝐴𝑖) =
∑︀𝑚𝑎𝑥𝑠𝑡𝑒𝑝𝑠

𝑡=1 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑃𝑅𝐼𝑂𝑅(𝐴𝑖)/𝑚𝑎𝑥𝑠𝑡𝑒𝑝𝑠

2. 𝑅𝐹𝑃𝑂𝑆𝑇𝐸𝑅𝐼𝑂𝑅(𝐴𝑖) =
∑︀𝑚𝑎𝑥𝑠𝑡𝑒𝑝𝑠

𝑡=1 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑃𝑂𝑆𝑇𝐸𝑅𝐼𝑂𝑅(𝐴𝑖)/𝑚𝑎𝑥𝑠𝑡𝑒𝑝𝑠

The variables 𝑅𝐹𝑃𝑅𝐼𝑂𝑅 and 𝑅𝐹𝑃𝑂𝑆𝑇𝐸𝑅𝐼𝑂𝑅 calculate the (relative) activation frequency
and how often the agent needs to apply a regulatory action, respectively. We interpret this
as related to an essential intervention by the safety team represented by the agent. Thus, the
activation rates are related to potential costs accumulating over the simulation phase.

3. 𝐹𝐶𝑂𝑁𝐶𝐸𝑃𝑇 (𝑡) =
∑︀𝑛

𝑖=1 |𝑀(𝐴𝑖) | + | 𝐼(𝐴𝑖) |
4. 𝑅𝐹 (𝑀𝑖) =

∑︀𝑚𝑎𝑥𝑠𝑡𝑒𝑝𝑠
𝑡=1 |𝑀𝑖𝑡(𝐴𝑗) | /𝑚𝑎𝑥𝑠𝑡𝑒𝑝𝑠

5. 𝑅𝐹 (𝐼𝑖) =
∑︀𝑚𝑎𝑥𝑠𝑡𝑒𝑝𝑠

𝑡=1 | 𝐼𝑖𝑡(𝐴𝑗) | /𝑚𝑎𝑥𝑠𝑡𝑒𝑝𝑠

The variable 𝐹𝐶𝑂𝑁𝐶𝐸𝑃𝑇 gives information about the frequency of the occurrence of reg-
ulatory concepts, which is not derivable directly from texts. We defined the agents with a
specific budget for processing incidents and measures at a particular time step. If 𝐹𝐶𝑂𝑁𝐶𝐸𝑃𝑇

exceeds this budget, a critical situation can be assumed for that agent. The variables 𝑅𝐹 (𝑀𝑖)
and 𝑅𝐹 (𝐼𝑖) calculate the relative frequency of a specific measure or incident in the whole
experiment and give insight into how likely such concepts could occur in similar regulatory
settings. Depending on these characteristics, regulatory safety teams can focus and prepare for
likely measures and incidents.

6. 𝑆𝑒𝑚𝐼/𝑀 (𝑀𝑖, 𝐴𝑗) =
∑︀𝑚𝑎𝑥𝑠𝑡𝑒𝑝𝑠

𝑡=1 𝐷𝑖𝑓𝑓(𝑀𝑖(𝐴𝑂𝑇𝐻𝐸𝑅𝑆),𝑀𝑖(𝐴𝑗))/𝐹𝑀𝑖

As we introduced before, regulatory concepts can be ambiguous. The measure of one can
be the incident of another. The variable 𝑆𝑒𝑚𝐼/𝑀 (𝑀𝑖, 𝐴𝑗) gives a semantic estimate of how
to classify the regulatory measure 𝑀𝑖 into the classes of incident and measure from the
perspective of the agent 𝐴𝑗 . If an agent 𝐴𝑗 also applies a particular measure at time step t
applied by any other agent (𝐴𝑂𝑇𝐻𝐸𝑅𝑆) then this measure is classified as a measure also for
𝐴𝑗 because he acts in the same way. In contrast, the semantics of an incident are assumed if
the others’ measures are not applied by the agent. For instance, if a fire alarm is initiated as
a measure reacting to a fire by another agent, then all agents who do not apply this measure
might experience a high impact of the measure and have to respond to the others’ fire alarm
as if it were an incident. From this ratio, we learn if a regulatory concept tends to affect other
agents more or less. (In time, step 𝑡+ 1, measures can even have an incidental character for 𝐴𝑗

himself.)
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Figure 1: Representation of a regulatory scenario with five agents (S1-S5) and one environment
(6) showing symbolic retrieval and placement of measures.

4.3. Experiments

In the following, we present a collection of experiments as depicted in Figure 1 that describe
the calibration of hyperparameters, individual characteristics of each agent configuration, and
comparable aspects of the simulation outcome. The available dataset was divided into an
experimental data environment with training, validation, and test splits, leaving 10% of all
sentences for each; validation and testing.

We initially tested the algorithms with a small selection of three documents that were known
in terms of document content to investigate the behavior with human insight. The calculation of
similarities and vector embeddings is computationally intense. Therefore, we made a selection
of 26 documents. Then, we pre-calculated a vector embedding for each case, integrating the
document title as context, and saved the embeddings for later use in the simulation. As statistical
language models, we used a locally hosted smaller spacy [28] transformer model for development
purposes and the openAI API to run the final simulations using an ADA2 embedding model [29].

The calibration of the ABM in new regulatory settings is a crucial initial question. Our
experiments used the same threshold values for 𝛿 and 𝜎 for all agents. We then simulated some
steps to observe the activation rates of the agents. We chose the thresholds so that most agents
had primary activation rates between 50 and 80 percent and secondary activation rates around
10 percent. If the thresholds are chosen too low, the agents are activated in every step, and
if they are too high, the agents are never activated. For a finer tuning of 𝛿 and 𝜎 or specific
calibration for each agent, a deeper understanding of the regulatory setting and collaboration
with domain experts seems reasonable.

Regarding scalability, the size of the case base has a major impact on the runtime, which
leaves room for optimization by exploiting the structural knowledge about the cases for faster
retrieval. Additionally, the complexity of similarity measures was limited by (our) computational



Figure 2: The variables 𝐹𝑃𝑅𝐼𝑂𝑅 and 𝐹𝑃𝑂𝑆𝑇𝐸𝑅𝐼𝑂𝑅 for five agents in an experiment of 50 steps
against an earthquake environment randomly sampled [27].

resources.
We ran the simulations on an environment with 840 short messages during a significant

earthquake in Italy in 2016. An earthquake is a major threat to nuclear safety and a relevant
event in that context. We sampled this environment randomly, presenting a random message at
each time step.

4.3.1. Budget Planning

Figure 2 shows an experiment of 50 steps done with a setting of five agents created from:
1194(ID:1), 1115(ID:2), 1122(ID:3), 1158(ID:4), and 1448(ID:5) [24]. Documents 1158 and 1448

Figure 3: Variable 𝐹𝐶𝑂𝑁𝐶𝐸𝑃𝑇 for two experiments against an earthquake environment with
two different agent configurations of three and five agents.



are related to seismic aspects of nuclear safety. The diagrams show the cumulated primary
activation and secondary activation. The primary activation rate indicates the relation of the
agents with ID:4 and ID:5 to seismic hazards. An interesting result was the rate of secondary
activation of the agents. The clear distinction of the agents in the prior similarities blurs in the
posterior similarities because the reactions of all agents are respected, leading to more even
activation rates. Regarding our previously explained calibration strategy, a secondary activation
rate of about 50 percent seems too high, so the threshold 𝜎 should have probably been chosen
smaller.

4.3.2. Regulatory Density

We assume the more regulatory actions occur within a particular time interval, the more focus
should be on these phases. A dense regulatory activity signifies that more problems could arise
and that the constellation leading to more activities is worth investigating more deeply. The
development 𝐹𝐶𝑂𝑁𝐶𝐸𝑃𝑇 of the regulatory concepts activated in all agents is displayed for two
different environment settings in Figure 3. The diagrams show that there are time intervals
with noticeably more action.

4.3.3. Incident-Measure Semantification

Table 1 shows the rate𝑅𝐹 (𝑀𝑖) of the three selected regulatory concepts design, requirements,
and limit. Table 2 shows the rate 𝑆𝑒𝑚𝐼/𝑀 (𝑀𝑖, 𝐴𝑗) how often a certain classification into
incident and measure was derived for these regulatory concepts taken from the same earthquake
experiment as described before.

Table 1
Relative frequency of selected measures for three agents.

Regulatory Concept Agent ID:4 Agent ID:2 Agent ID:1
design 0.66 0.58 0.54

requirements 0.22 0.24 0.24
limit 0.66 0.66 0.70

Table 2
Semantification ratios for selected measures and three agents.

Regulatory Concept Agent ID:4 Agent ID:2 Agent ID:1
design I: 0.27 / M: 0.73 I: 0.79 / M: 0.21 I: 0.78 / M: 0.22

requirements I: 0.91 / M: 0.09 I: 0.50 / M: 0.50 I: 0.92 / M: 0.08
limit I: 0.24 / M: 0.76 I: 0.70 / M: 0.30 I: 0.83 / M: 0.17



5. Conclusion and Future Work

The semantification of entities and their relations is well investigated. Yet, the evidence is clear
that regulatory semantification requires more efforts to address further relevant characteristics
of regulatory concepts.

This work showed how a further layer of semantics and pragmatics can be put on top in
regulatory scenarios. We, therefore, exploited case-based methods as well as agent-based model-
ing. Initially, we presented an abstract regulatory case structure to realize domain-independent
regulation, which allows the integration of different regulatory actors in a sequential regula-
tory scenario. These components were merged with an adjusted similarity assessment into an
agent-based model. The model was used to simulate a disaggregated regulatory scenario where
agents (actors) have limited knowledge about the motivation and decisions of other regulatory
actors but have to react to their actions.

The theoretical considerations were carried out through a series of experiments in nuclear
safety, which has different regulatory subdomains.

A primary outcome of this work was that the presented architecture was very flexible. From
our perspective, new datasets can be easily integrated without significant pre-processing efforts,
mainly due to the consistent case-based design and, of course, the backbone functionality of
LLMs. A stacked design allows the exchange of components of similarity assessment, such as
different statistical language models. This was important in terms of scalability. Good results
could also be achieved with a less complex transformer model, allowing the processing of more
data simultaneously. This is especially important in addressing real-time use cases where data
must be processed live, for instance, during a disaster.

The promising results of the experiments lead to further research directions. As we work
on a humanly maintained corpus, it is desirable to investigate how the emergent information
of regulatory simulations can be integrated (retained) into the existing regulatory framework
in a semantic manner. The semantification of simulations into a regulatory knowledge graph
needs more exploration. At the same time, the refinement of regulatory case-based reasoning
is important as the case structure allows it to be added to a knowledge graph representation.
As agents will play an increasing role shortly, efforts to improve case-based theories in the
direction of autonomous self-regulation and distributed case-based reasoning will be needed.
Further, the focus is on developing the agent-based model. First, it will have a more sophisticated
configurational component to adjust it to more complex real-world scenarios to gain deeper
insight into patterns of regulatory multi-agent-based phenomena. Second, it will be capable
of a few-shot evaluation by humans to set configurational parameters within a given human
work budget and facilitate model calibration. Finally, the growing capabilities of generative
models will allow for the addition of spatial components and visualization of the simulations.
In this context, we see diverse use cases for the training and education of humans working in
safety-related environments.
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