
Enhancing Data Accessibility:
Integrating Speech-Based Interfaces with Large
Language Models for Intuitive Database Queries
Abdullah Kiwan1, Andreas Lommatzsch2 and Sahin Albayrak1,2

1GT-ARC, TU Berlin, Ernst-Reuter-Platz 7, D-10587 Berlin, Germany
2DAI-Labor, TU Berlin, Ernst-Reuter-Platz 7, D-10587 Berlin, Germany

Abstract
Accessing complex database information often requires specialized knowledge. Existing dashboard tools
supporting only pre-defined queries are inflexible and inadequate for many users. This paper introduces
a novel approach by combining an intuitive, speech-based interface with a Large Language Model
(LLM) specifically trained to understand database structures and generate user-friendly answers and
visualizations. Ourmethod focuses on simplifying the interaction for non-expert users by allowing them
to ask questions directly and receive insights without the need for database engineers or data scientists.
This is especially important to handle follow-up questions raised by anomalies in generated answers.
We present a detailed analysis and discussion of a use case that demonstrates the practicality and
effectiveness of our approach through a developed prototype. We study the strengths and weaknesses
of the system components as well as the user feedback for the system. Based on the observations further
research directions are discussed.

1. Introduction

In today’s data-driven world, the need for efficient and user-friendly access to information
stored within complex databases is more critical than ever. Traditional systems often rely
on predefined dashboards and queries, which can be inflexible and inadequate for users who
require dynamic access to data. The implementation of new queries often requires database
engineers or data scientists, making the process inefficient and slow for users without technical
expertise.

To address these challenges, we propose an innovative approach that merges the
intuitiveness of a speech-based interfacewith the robust capabilities of a Large LanguageModel
(LLM). Our idea focuses on creating an LLM that is not only trained to understand and generate
human-like responses but also equipped to comprehend the underlying structure of a database.
By teaching the model typical user inquiries and dialogues, we aim to empower normal users
to retrieve complex data and generate visual representations independently, without the need
for specialized knowledge.

In the evaluation of the developed system, we focus on the following research questions:

abdullah.kiwan@gt-arc.com (A. Kiwan); andreas.lommatzsch@dai-labor.de (A. Lommatzsch);
sahin.albayrak@dai-labor.de (S. Albayrak)

© Copyright by the paper’s authors. Copying permitted only for private and academic purposes. In: Pascal Reuss (Eds.): Proceedings of the
LWDA 2024 Workshops: BIA, DB, IR, KDML and WM. Würzburg, Germany, 23. - 25. September 2024, published at

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:abdullah.kiwan@gt-arc.com
mailto:andreas.lommatzsch@dai-labor.de
mailto:sahin.albayrak@dai-labor.de
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


• Howwell current LLMs performwithout post-training/fine-tuning in the given scenario?
• How reliable company specific questions can be answered by our system (considering
domain specific vocabulary and the probability of incorrect answers)?

• What are the optimal strategies for achieving high levels of user satisfaction? What are
the performance limitations of the LLM when processing large and complex datasets?

• What are the potential areas for further research to improve the capabilities of the
application?

Our contribution to this field includes a comprehensive analysis and discussion of a case
that illustrates the practical challenges and demands of current information retrieval systems.
We have developed a prototype that converts user speech into SQL-based database queries and
generates answers including diagrams answering the user’s information demand. Based on the
analysis of the strengths and weaknesses of our prototype we discuss the research needs.

The remainder of this paper is organized as follows. Sec. 2 describes the problem in
detail. Sect. 3 discusses existing methods to identify promising methods and strategies. Sec. 4
describes the developed system and the pipeline deployed for generating answers to the
concrete information demand. Subsequently, the evaluation of our approach is presented in
Sec. 6 analyzing the results from a quantitative and qualitative perspective. Finally, Section 7
discusses the generalization of our findings and Sec. 8 provides an outlook on future work.

2. Problem Description

In today’s business world, having quick access to important information stored in complex
databases is crucial. However, the current methods of getting this information are often slow
and inefficient. Employees typically have to wait for database engineers and data analysts to
generate reports, which can delay decision-making and reduce productivity.

While data analytics tools (like Microsoft Power BI1 or Tableau2) exist to help create
reports from databases, they have limitations. These dashboards rely on predefined queries
and require users to have some technical knowledge to use them effectively. This makes
it challenging for employees without specialized skills to get the data they need quickly.
Furthermore, predefined queries do not offer the flexibility to answer varied and dynamic
questions. Users often end up with static reports that do not fully address their specific needs,
leading to repeated requests for new reports.

To solve these problems, there is a need for an application that allows users to ask questions
in natural language and get immediate answers from the database. In addition, follow-up
questions should be supported to provide deeper insight into specific questions. A natural
language interface would allow employees to quickly access the information they need without
relying on technical experts. An assistant that understands the user’s intentions and database
structures could provide more intuitive and flexible interactions with complex data. Such a
solution would empower users to retrieve and interpret data independently, leading to better
and faster decision making and a more efficient business environment.

1https://www.microsoft.com/de-de/power-platform/products/power-bi
2https://www.tableau.com

https://www.microsoft.com/de-de/power-platform/products/power-bi
https://www.tableau.com


In our approach, we consider several user-related as well as technical challenges we discuss
in subsequent subsections.

2.1. User-Related Challenges

To ensure the user satisfaction, the user expectations must be considered.

Understanding User Expectations One of the primary challenges is aligning our
understanding with the customers’ expectations. Users, particularly those without a technical
background, have very diverse beliefs about LLMs, often expecting that an LLM can read the
user’s mind and grasp their intent without clear and precise input. This misunderstanding
necessitated thorough communication regarding the capabilities of LLMs, and required
methods to guide and support users to formulate questions that contain all relevant information
and demands to achieve the desired outcomes.

Vocabulary and Synonyms Each organization employs specific terminology that is unique
to their internal operations. It is a significant challenge to ensure that LLMs understands
and correctly interpreted these company specific terms. It requires close collaboration with
the customers to compile a comprehensive list of synonyms and commonly used phrases.
Integrating this vocabulary into the LLM is essential for tuning themodel to respond accurately
to user queries.

2.2. Technical Challenges

In addition to the user-related challenges, the technical challenges must be addressed.

Hallucination Systems making use of LLMs have to fight with the phenomenon of
hallucination, where the LLM generates plausibly sounding, but inconsistent or incorrect
answers. This issue is particularly apparent during the evaluation process, as it occasionally
produced varying results for the same input. Addressing this instability is critical to ensure the
reliability of the application.

Query Optimization The LLM may generate code for querying data that is executable, but
not optimized resulting in query timeouts. This occurs for complex information demands
requiring multiple database table join operations. Optimizing the generated queries to handle
complex database structures effectively is a challenging aspect in the development process that
should be addressed by the database management software and the module that generates the
query.

Performance and Speed A long response time of web applications is a frequently reported
problem from the user perspective. The latency primarily stemmed the chain of several LLM’s
prompts required for generating the SQL query and “transforming” the database response
into natural language answers or diagram. The dual reliance on the LLM contributed to
delays, which often impacts the user satisfaction. Identifying andmitigating these performance
bottlenecks and paralleling steps is important to enhance the user experience.

Developing a solution that addresses these user and technical challenges is key to ensuring
an efficient, robust application that provides intuitive access to complex database information
and simplifies business decision making.



3. Related Work

In this section we review existing tools and discuss existing approaches.

3.1. Data Analysis, Visualization, and Business Intelligence Tools

The landscape of data analysis and visualization has evolved significantly, with various tools
emerging to meet the diverse needs of businesses and analysts. This subsection discusses some
of the leading tools in the market.

Microsoft Power BI3, Looker Studio4,and Tableau5 are business intelligence tools
designed to provide interactive visualizations and business intelligence capabilities. They
support a wide range of data sources and offer features such as dashboards, reports, and
integration with other tools. These tools are designed for data analysts; based on low code-
based user interfaces also non experts should be able to create queries. Recent version of
Microsoft Power BI and Tableau provide a component for deriving simple query from
natural language inputs by detecting entities in unstructured texts.

For visualization, NL4DV [1] is a toolkit for natural language-driven data visualization. It
takes as input a tabular dataset and a natural language query about that dataset. In response,
it returns an analytic specification.

The analysis shows that there is a need for simplifying the access to business intelligence.
The existing systems try to add additional components, but the focus is still on extended
support for data scientists. In our work, we start from a chat perspective. Thus, users can
benefit from all the strengths of Large Language Models (wide range of questions, dialog-style
follow up questions) and enter database-related questions in an intuitive way (using speech or
natural language).

3.2. Pretrained Models for Text-to-SQL

The generation of SQL queries based on unstructured texts is an vivid research topic. Several
models and approaches have been suggested:
SQLNet is a model developed to address the “order-matters” problem in SQL query generation
by employing a sequence-to-set model and a column attention mechanism [2]. Seq2SQL
is a deep neural network for translating natural language questions to corresponding SQL
queries [3]. The model uses rewards from in-the-loop query execution over the database to
learn a policy to generate the query.
SQLova is a powerful text to SQL model to achieve a high accuracy in WikiSQL dataset [4]. It
uses table-aware word contextualization with large pre-trained language model BERT [5].

The analysis of these models shows that different methods for generating queries based on
unstructured user inputs exist. Fine-tuning of the models for concrete databases and scenarios
strongly improves the performance. Due to the fast changes in the domain of Large Language
Models the results are often difficult to reproduce. In our research we focus on zero shot

3https://www.microsoft.com/de-de/power-platform/products/power-bi
4https://cloud.google.com/looker-studio
5https://www.tableau.com

https://www.microsoft.com/de-de/power-platform/products/power-bi
https://cloud.google.com/looker-studio
https://www.tableau.com


learning. We use standard Large Language Models to ensure that the models are not limited to
query generation and can be updated easily. We analyze how successful non-tuned LLMs can
be used for generating answers based on business databases.

3.3. Large Language Models

In addition to pre-trained models for text-to-SQL there are several interesting approaches
that extend the idea of Large Language Models: PICARD [6] introduces a novel approach to
text-to-SQL generation by constraining auto-regressive decoders of language models through
incremental parsing. EPI-SQL [7] is a framework leveraging Large Language Models to
enhance the performance of text-to-SQL tasks. EPI-SQL involves collecting instances from the
dataset where LLMs fail. These instances are then utilized to generate general error-prevention
instructions (EPIs). SQL-PaLM [8] extends the capabilities of large language models by
applying few-shot prompting and instruction fine-tuning. SGU-SQL [9] is a structure-to-SQL
framework, which leverages the inherent structure information to improve the SQL generation
of LLMs. DTS-SQL [10] is a novel approach that decomposes the task into two simpler tasks
solved by a small LLM. PET-SQL [11] introduces a two-round framework to enhance the
performance of LLMs based on few-shot prompting and cross-consistency across different
LLMs. The performance of the models can be evaluated using the frameworks by Rajkumar
et al. [12] or the methods by Roberson et al. [13].

The analyzed systems suggest strategies for SQL generation by using incremental parsing,
few-shot prompting, instruction fine-tuning, and structural information leveraging. These
systems show a high complexity and resource demands. In our work we try to keep the
complexity low to ensure extensibility and adaptability. Our approach is implemented in a
real corporate setting, contrasting with the theoretical or lab-based studies often cited. We use
it with real users and in daily operations, providing practical insights that set our work apart
from the more experimental studies in existing papers.

4. Approach

We develop a chatbot prototype to provide answers (including graphical visualizations) for
natural language questions. We use a flexible, component-based approach enabling the
integration and evaluation of NLP- and AI algorithms. The architecture of our system is
shown in Figure 1. The typical processing pipeline and the specific capabilities of the developed
component are explained in the following sections.

4.1. Database Query Builder

The core component of our system is the query builder designed to derive database queries
from natural language text inputs. The component provides APIs to integrate existing Large
Language Models, such as OpenAI GPT-4 [14] or a locally hosted Llama-3 [15] model. We start
with existing LLMs and provide all application specific information in the system prompt. The
system prompt includes the data structure to ensure that the database column name, the date
types and the reference relation between the tables are known to the LLM.



Figure 1: The System Architecture

In addition, application specific vocabulary and synonyms are provided in the system prompt
making the mapping from “colloquial” user inputs to the formal database model more robust
and reliable. The used approach requires additional discussions with the users and domain
experts; but standard LLMs do not know niche application user vocabularies well enough for
ensuring high quality data query results. In the design process we discussed how to teach
the domain specific synonyms in the LLM-fine tuning process. we opted for using the system
prompt enabling us to integrate different LLMs. This also simplifies the use of recent, more
powerful LLMs.

4.2. Database Connector

The query generated by the query builder is sent to the database. The retrieved data are
formatted as json files simplifying the post processing of the data. The database connector
gives access to different databases, using standard connectors, such as ODBC. The database
connection should ensure that the SQL-dialect is supported as well as that large query outputs
are processed efficiently (e.g. by setting limits for the output size). This is particularly
important to ensure the rapid responses that are the basis of a good user experience.

4.3. Processing the Database Results

After retrieving the data required to satisfy the user’s information needs, the data is
transformed into either a natural user response or a diagram that visually provides the answer.

Text Output Component If the user requests the output in plain text format, a dedicated
LLM agent processes the data and generates a coherent and concise textual response. This
agent ensures that the information is presented clearly and accurately, making it easy for the
user to understand.



Visualization Output Component If the user prefers a visual representation of the data,
another LLM agent is responsible for creating appropriate charts or graphs. This agent
interprets the data and selects the most suitable visualization format, enhancing the user’s
ability to grasp complex information quickly and effectively.

4.4. Multi-Modal User Interface (Chatbot-Based Interface)

At the core of the application is a chatbot-based interface, providing an intuitive and user-
friendly platform for interacting with the database. This design choice ensures that users can
engage with the system using natural language, facilitating a more accessible and efficient
means of querying and retrieving data without requiring specialized technical knowledge.

Voice-to-Text Support The speech-to-text feature in our application enhances user
interaction by allowing users to verbally communicate their queries, which are then converted
to text for further processing. This functionality is implemented using JavaScript libraries that
make use of the browser’s built-in capabilities. The Web Speech API’s SpeechRecognition6

interface provides a powerful mechanism for capturing and transcribing speech in real-time
ensures a seamless user experience.

Text-to-Voice Functionality The text to speech feature complements the speech to text
functionality by enabling the application to provide spoken responses to user queries. This
feature is particularly useful for users who prefer auditory feedback or have visual impairments.
Our system also uses the Web Speech API’s SpeechSynthesis7 interface.
In order to process a user request, several calls of the LLMs are required, resulting in a chain
of LLM-calls and an interaction with the database. Each LLM call and database output for
generated queries may produce unexpected results (e.g. unexpected data format or timeout)
requiring an exception handling. Specific exceptions, such as invalid data formats returned
by the LLM, can often be resolved by retrying the call. If the pipeline fails, the user must be
notified, as non-technical users are often sensitive to unexpected results. Since LLMs are still
less reliable compared with traditional methods, users should be aware of the fact, that not all
questions can be answered in the first try.

5. Implementation and Deployment

Our prototype has been implemented based on a Python-based backend and a vue.js-based
frontend. It has been deployed on a Ubuntu Linux-based virtual machine using docker
containers.

The User Interface

The user interface is developed as a modern web-based UI. The UI allows the user to interact in
a text chat. In addition, users can enter speech; generated answers can be read by the system
by integrating a text-to-speech module. Figure 2 shows an example of the UI.

6https://developer.mozilla.org/en-US/docs/Web/API/SpeechRecognition
7https://developer.mozilla.org/en-US/docs/Web/API/SpeechSynthesis

https://developer.mozilla.org/en-US/docs/Web/API/SpeechRecognition
https://developer.mozilla.org/en-US/docs/Web/API/SpeechSynthesis


Figure 2: The chatbot window supports text and speech inputs. Users get text-based answers and diagrams
answering the given question.

Backend Implementation

The backend has been developed using Python, leveraging LangChain for the LLM and
chatbot functionalities. LangChain facilitates the integration of advanced natural language
processing capabilities, enabling the system to effectively understand and respond to user
queries.

Database Integration To connect our application to the client’s database, a dedicated
virtual machine was provisioned. This virtual machine served as the deployment environment
for the application, ensuring secure and efficient access to the database management system.

The application was deployed on the virtual machine using Docker, which provided an
isolated and consistent environment for running the application. Docker simplifies the process
of creating, deploying, and running applications in containers, ensuring that the application
performs reliably regardless of the underlying infrastructure.

The connection to the database management system was established using pymssql, a
Python library that facilitates interaction with Microsoft SQL Server databases. This setup
allowed the application to execute SQL queries and retrieve data according to user requests.

Integration of LLMs We integrated the Azure API to connect and utilize the GPT-4 [14]
model. The Azure API facilitated seamless access to GPT-4 [14], ensuring that our application
could utilize the latest advancements in natural language processing without the need for
extensive on-premises infrastructure.

Conclusion The integration of LangChain, Docker, and the APIs to recent LLMs into our
back-end architecture not only streamlines the development and deployment processes but
also enhances the system’s capability to deliver robust and high quality responses tailored to
user interactions. The used technical basis of our application ensures an easy deployment and
the flexibility to integrate new models and components.



6. Evaluation

The developed prototype has been evaluated in a real-world setting within a company,
providing us with access to live data. Employees are asked to test the system to evaluate the
performance, usability and perceived benefits.

6.1. Evaluation Metrics and Benchmarking

To assess the performance of our system, employees provided a set of frequently asked
questions that they anticipate using regularly. We utilized these questions as benchmarks,
categorizing them into three levels of difficulty: Easy, Medium, and Hard.

• Easy (3 questions): This level includes questions involving basic database operations
such as a sum operation, group by, and a single join. An example of such a question is:
“Show total quantities by region on May 14, 2024.”

• Medium (9 questions): Questions in this category are more complex, incorporating
operations similar to those in the Easy category but require two join operations. For
instance: “Show total quantities by region on May 14, 2024, for the TIRE industry.”

• Hard (3 questions): This category comprises questions similar to Medium but requiring
additional reasoning to translate customized information in the prompt into an SQL
query. An example is: “Show total quantities in March according to BIG 6,” where “BIG
6” refers to a specific group of customers defined in the database. The calculationmethod
for BIG 6 is provided in the prompt, and the LLM is expected to incorporate this into the
SQL query effectively.

To measure the success of each question within our evaluation framework, we established
a specific metric based on the accuracy and functionality of the SQL queries generated by the
LLM. A question is considered successfully answered if it results in a SQL query that is not
only syntactically correct but also executes without errors and retrieves the correct response
from the database.

Each question within this benchmark can be varied significantly by changing elements such
as the date, date range, or specific products, thereby make more queries for our system to
evaluate. The evaluation shows that while the Easy questions were successfully processed,
the Medium and Hard questions required additional tailored information in the prompt to be
successful. For instance, to accurately compute ‘Big 6’, specific details about the necessary
database table and column needs to be included in the prompt.

6.2. Synonyms, Vocabulary, and Hallucination

At the outset of the project, company employees provided us with the set of benchmark
questions and the corresponding correct SQL queries. Initially, these questions were used to
test the system without integrating the company’s specific synonyms and vocabulary into the
LLM. The results of these early tests were successful for the Easy questions, but unsatisfactory
for the Medium and Hard questions; the LLM often failed to generate correct SQL queries,
leading to incorrect results or errors during the execution of the SQL queries on the database.



A significant issue observed during this phase was the phenomenon of hallucination, where
the LLM produced unstable and varying SQL queries for the same input. This instability was a
direct consequence of the model’s lack of familiarity with the specific terminology used within
the company.

To address these problems, we integrated the company-specific synonyms and vocabulary
into the LLM. This enhancement resulted in a marked improvement in system performance.
The integration eliminated hallucination and significantly stabilized the generation of SQL
queries. Post-integration tests showed that the LLM was able to consistently generate correct
and reliable SQL queries thus ensuring accurate results and reducing execution errors.

6.3. Analyzing Llama 3 and GPT-4 for Text to Query Generation

Our system enables the flexible integration of different LLMs. In our tests, we conducted
a comparative analysis between Llama 3 [15], an open-source large language model, and
GPT-4 [14], a closed-source model, specifically for their performance in text-to-query
generation.

We tested both models using the set of questions provided by the client. The test set included
questions of different complexity, starting with questions that could be answered based on
one database table to questions that required multiple join-operations. The results indicated a
significant performance difference between the two models:
GPT-4 [14] consistently produced more accurate and optimized SQL queries. The queries

generated by GPT-4 [14] successfully retrieved the correct data and did not result in any errors.
The model demonstrated a robust understanding of the database structure and user-specific
vocabulary, leading to precise and reliable outputs. Even complex join-operation have been
generated correctly.

In contrast, Llama 3 [15] exhibited several limitations. A majority of the queries generated
by Llama 3 [15] resulted in timeout errors, indicating that the model struggled to produce
optimized queries. Generated SQL-queries contained often more join-operations than needed.
Thus, the SQL queries for simple questions worked OK, but for more complex questions the
generated SQL queries resulted in a timeout. In addition, in about 25% of the cases Llama 3
generated queries contained syntax errors for accessing database columns. Thus, errors are
easily to fix for normal database users, but for non-experts, even simple errors are a problem.

In conclusion, GPT-4’s [14] performance in generating accurate and efficient SQL queries
far surpasses that of Llama 3 [15]. GPT-4 [14] reliably generated SQL queries containing up to
three join operations. On the other hand, open-source models like Llama 3 [15] offer flexibility
and accessibility enabling an scenario-optimized fine-tuning. This means, that the integration
of Llama 3 [15] needs additional efforts and cost to optimize the LLM - but it also gives a higher
level of data security and the opportunity to do fine-tuning. As discussed in the related work
section, several projects exist that fine-tune Llama for the generation of SQL queries to the
performance is comparable to GPT-4 [14]. This means, that GPT-4 [14] performs very well
in our scenario without any adaptation; but based on the enterprise guidelines and available
capacities, open-source models such as Llama 3 [15] can be considered if enough resources for
fine-tuning are available.



6.4. User Impressions

As an initial evaluation phase, we had 3 users, a Data Engineer, and two sales people since
the application will be used in the sales department. Upon finalizing the application, it
was subjected to extensive testing by the company’s employees. Overall, the feedback from
users was positive. Users appreciated the system’s ability to understand and respond to their
queries accurately. The stability and correctness of the SQL query generation, post-synonym
integration, were particularly well-received. Since the system is based on a general purpose
LLM, the system does not only answers database related questions, but it also provides answers
for a wide spectrum of questions.

However, users raised concerns about the response time of the application. While the
system’s performance in terms of accuracy and stability was satisfactory, the time taken to
generate and return the final output was longer than desired. For some queries, the response
time was as high as 15 seconds. Users expressed a preference for a maximum response time
of 5 seconds, indicating a need for further optimization in terms of processing speed. This
is a challenging demand, since the time need by LLM for generating answers depends on the
amount of input data. Providing complex data base schema results in a slow answer behavior.

Discussion Through our evaluations, several key findings emerged:
• Effective communication with users about the capabilities and limitations of the LLM is
crucial for setting realistic expectations and achieving accurate results.

• Incorporating user-specific vocabulary and synonyms into the LLM significantly
improves its performance and accuracy. Managing LLM-hallucination and ensuring
stable outputs require ongoing evaluation and refinement of the model. An extended
error handling is crucial to provide well readable answers even if a step in the processing
pipeline fails or must be repeated due to unstable LLM answer behavior.

• The speech-to-text and text-to-speech features work well in demonstration settings.
Even though speech support is technically not hard, it gives users the impression to
interact with an intelligent system. A weakness is the addition processing time - in a
speech-based dialog fast responses are expected by most users.

• Improving the speed of the application is vital to user satisfaction, which requires efforts
to streamline the LLM processes involved in query generation and response formulation.

Overall, our test users have been satisfied with the prototype since it handled the question set
(defined by the test users) well. Still there is room for improvement especially with respect to
runtime and handling complex questions.

7. Conclusion

This study addresses the critical need for more flexible and accessible methods to extract
information from complex databases, highlighting the limitations of traditional dashboards and
the dependency on technical experts. Our approach combines a speech-based interface with a
LLM, specifically trained to understand database structures, generate insightful responses and
provide visualizations. The developed prototype demonstrates the potential in simplifying data
retrieval and interaction for non-expert users, thereby democratizing data access.



Our analysis of the developed prototype demonstrates that Large Language Models, such
as GPT-4, excel at producing accurate and efficient SQL queries, even without fine-tuning.
Adequate prompting (incorporating domain-specific vocabulary) is sufficient to achieve this
performance. The queries generated under these conditions are both precise and dependable,
providing reliable answers.

8. Future Work

The evaluation results show that there is still room for several improvements and extensions.

Multi-Agent LLM System The current system uses only one LLM for handling user queries.
In order to improve the precision and the performance of the system, several task-optimized
(“fine-tuned”) LLMs could be integrated using a multi-agent approach. We expect that this
would speed up the user input processing and improve the response quality, but would lead to
a higher technical complexity and additional effort for tuning the integrated LLMs.

Enhanced Query Optimization When users tested our system, they typically started with
simple questions that could be answered based on one or two database tables. This motivates
the users to test more complex questions requiring multi-join queries. Such queries may run
into timeout due to complex join operations. When debugging such cases, we manually tuned
the queries by reordering and limiting the operations in generated SQL queries. In the future
this optimization step should be performed with an AI-based component trained on examples
optimized for the used database engine and the relevant SQL dialect. In addition, the system
could detect very complex user demands and suggest simpler, but still useful questions.

Detecting and Handling Hallucinations Invalid answers due to incorrect SQL queries are
a big challenge. It is for technically inexperienced users very difficult to check the plausibility of
answers. Thus, the system should provide strategies for checking and explaining the reliability
of answers. To cope with hallucinations, we plan to explore new training methodologies that
reduce the likelihood of hallucinations. Furthermore, we plan to utilizing feedback loops to
correct inaccuracies in real-time, thereby improving the model’s reliability and user trust over
time. In addition, we will explore additional validation components to ensure the accuracy and
reliability of the generated responses.

By pursuing these research directions, we aim to build on the foundation of our current
application to create a more robust, efficient, and user-friendly tool for the interaction with
databases. These efforts will contribute to the advances in fields of natural language processing
and database management, ultimately leading to more accessible and powerful data analysis
solutions for users across various of industries.

Acknowledgment

This paper is based on the research conducted in the Go-KI project (Offenes Innovationslabor
KI zur Förderung gemeinwohlorientierter KI-Anwendungen) funded by the German Federal
Ministry of Labour and Social Affairs (BMAS) under the reference number DKI.00.00032.21.



References

[1] A. Narechania, A. Srinivasan, J. Stasko, NL4DV: A Toolkit for Generating Analytic
Specifications for Data Visualization from Natural Language Queries, IEEE Transactions
on Visualization and Computer Graphics 27 (2021) 369–379. URL: http://dx.doi.org/10.
1109/TVCG.2020.3030378. doi:10.1109/tvcg.2020.3030378.

[2] X. Xu, C. Liu, D. Song, SQLNet: Generating Structured Queries From Natural
Language Without Reinforcement Learning, 2017. URL: https://arxiv.org/abs/1711.04436.
arXiv:1711.04436.

[3] V. Zhong, C. Xiong, R. Socher, Seq2SQL: Generating Structured Queries from Natural
Language using Reinforcement Learning, 2017. URL: https://arxiv.org/abs/1709.00103.
arXiv:1709.00103.

[4] W. Hwang, J. Yim, S. Park, M. Seo, A Comprehensive Exploration on WikiSQL
with Table-Aware Word Contextualization, 2019. URL: https://arxiv.org/abs/1902.01069.
arXiv:1902.01069.

[5] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding, in: J. Burstein, C. Doran, T. Solorio (Eds.),
Proceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers), Association for Computational Linguistics, Minneapolis, Minnesota, 2019, pp.
4171–4186. URL: https://aclanthology.org/N19-1423. doi:10.18653/v1/N19-1423.

[6] T. Scholak, N. Schucher, D. Bahdanau, PICARD: Parsing Incrementally for Constrained
Auto-Regressive Decoding from Language Models, in: M.-F. Moens, X. Huang, L. Specia,
S. W.-t. Yih (Eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, Association for Computational Linguistics, Online and Punta
Cana, Dominican Republic, 2021, pp. 9895–9901. URL: https://aclanthology.org/2021.
emnlp-main.779. doi:10.18653/v1/2021.emnlp-main.779.

[7] X. Liu, Z. Tan, EPI-SQL: Enhancing Text-to-SQL Translation with Error-Prevention
Instructions, 2024. URL: https://arxiv.org/abs/2404.14453. arXiv:2404.14453.

[8] R. Sun, S. Ö. Arik, A. Muzio, L. Miculicich, S. Gundabathula, P. Yin, H. Dai, H. Nakhost,
R. Sinha, Z. Wang, T. Pfister, SQL-PaLM: Improved Large Language Model Adaptation for
Text-to-SQL (extended), 2024. URL: https://arxiv.org/abs/2306.00739. arXiv:2306.00739.

[9] Q. Zhang, J. Dong, H. Chen, W. Li, F. Huang, X. Huang, Structure Guided Large
Language Model for SQL Generation, 2024. URL: https://arxiv.org/abs/2402.13284.
arXiv:2402.13284.

[10] M. Pourreza, D. Rafiei, DTS-SQL: Decomposed Text-to-SQL with Small Large Language
Models, 2024. URL: https://arxiv.org/abs/2402.01117. arXiv:2402.01117.

[11] Z. Li, X. Wang, J. Zhao, S. Yang, G. Du, X. Hu, B. Zhang, Y. Ye, Z. Li, R. Zhao, H. Mao, PET-
SQL: A Prompt-Enhanced Two-Round Refinement of Text-to-SQLwith Cross-consistency,
2024. URL: https://arxiv.org/abs/2403.09732. arXiv:2403.09732.

[12] N. Rajkumar, R. Li, D. Bahdanau, Evaluating the Text-to-SQL Capabilities of Large
Language Models, 2022. URL: https://arxiv.org/abs/2204.00498. arXiv:2204.00498.

[13] R. Roberson, G. Kaki, A. Trivedi, Analyzing the Effectiveness of Large Language
Models on Text-to-SQL Synthesis, 2024. URL: https://arxiv.org/abs/2401.12379.

http://dx.doi.org/10.1109/TVCG.2020.3030378
http://dx.doi.org/10.1109/TVCG.2020.3030378
http://dx.doi.org/10.1109/tvcg.2020.3030378
https://arxiv.org/abs/1711.04436
http://arxiv.org/abs/1711.04436
https://arxiv.org/abs/1709.00103
http://arxiv.org/abs/1709.00103
https://arxiv.org/abs/1902.01069
http://arxiv.org/abs/1902.01069
https://aclanthology.org/N19-1423
http://dx.doi.org/10.18653/v1/N19-1423
https://aclanthology.org/2021.emnlp-main.779
https://aclanthology.org/2021.emnlp-main.779
http://dx.doi.org/10.18653/v1/2021.emnlp-main.779
https://arxiv.org/abs/2404.14453
http://arxiv.org/abs/2404.14453
https://arxiv.org/abs/2306.00739
http://arxiv.org/abs/2306.00739
https://arxiv.org/abs/2402.13284
http://arxiv.org/abs/2402.13284
https://arxiv.org/abs/2402.01117
http://arxiv.org/abs/2402.01117
https://arxiv.org/abs/2403.09732
http://arxiv.org/abs/2403.09732
https://arxiv.org/abs/2204.00498
http://arxiv.org/abs/2204.00498
https://arxiv.org/abs/2401.12379


arXiv:2401.12379.
[14] OpenAI, The GPT-4 Team, GPT-4 Technical Report, 2024. URL: https://arxiv.org/abs/2303.

08774. arXiv:2303.08774.
[15] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière,

N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin, E. Grave, G. Lample, LLaMA: Open
and Efficient Foundation Language Models, 2023. URL: https://arxiv.org/abs/2302.13971.
arXiv:2302.13971.

http://arxiv.org/abs/2401.12379
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971

	1 Introduction
	2 Problem Description
	2.1 User-Related Challenges
	2.2 Technical Challenges

	3 Related Work
	3.1 Data Analysis, Visualization, and Business Intelligence Tools
	3.2 Pretrained Models for Text-to-SQL
	3.3 Large Language Models

	4 Approach
	4.1 Database Query Builder
	4.2 Database Connector
	4.3 Processing the Database Results
	4.4 Multi-Modal User Interface (Chatbot-Based Interface)

	5 Implementation and Deployment
	6 Evaluation
	6.1 Evaluation Metrics and Benchmarking
	6.2 Synonyms, Vocabulary, and Hallucination
	6.3 Analyzing Llama 3 and GPTnobreak4 for Text to Query Generation
	6.4 User Impressions

	7 Conclusion
	8 Future Work

