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Abstract. Large language models (LLMs) and retrieval augmented gen-
eration (RAG) are undergoing rapid development. Considering a case
base as a memory in a RAG system provides novel opportunities for text
generation. In this paper, we investigate the role Case-Based Reasoning
(CBR) could play for supporting RAG systems in generating accessible
explanations of business process models. We experiment with two differ-
ent case bases in a RAG system. Case base a) is dedicated to support
prompt chaining by reusing index knowledge on the cases with the aim
to deal with large process models that do not fit into the context window
size of a recent LLM. Second, case base b) contains model-text pairs to
serve as in-context examples to enhance prompt templates. Approach b)
aims to improve the quality of generated text explanations for process
models of normal size. Our contribution opens a novel application area
for process-oriented CBR. Further, our case-based RAG system provides
a contemporary alternative to traditional Natural Language Processing
pipelines. The experimental results contribute to gain some insights on
an inherent capability threshold of GPT-4 at which the performance de-
creases much earlier than having reached the given context window size,
on the number of retrieved cases a recent RAG system should use as
in-context examples, and on suitable prompt templates.

Keywords: Process-oriented CBR · Large Language models · Retrieval-
Augmented Generation.

1 Introduction

Most digital transformation projects target at process improvements when inves-
tigating the change that digital technologies can bring about in a company [9].
Business processes are “a set of logically related tasks performed to achieve
a defined business outcome for a particular customer or market” [3]. Weske
claims that business processes are “essential to understanding how companies
operate” [27]. The research field of process-oriented case-based reasoning (PO-
CBR) [20] addresses those business needs. PO-CBR has achieved considerable
success in assisting system analysts and further business process profession-
als [21, 11, 30, 19, 23].

However, many application domain experts and other users lack knowledge
on process modelling languages. They are struggling to understand the graph-
ical process models. Model explanations with plain text can help those users



and save precious hours or days of workshops with system analysts [14]. Early
model-to-text approaches use traditional Natural Language Processing (NLP)
pipes as a process model verbalization technique [14]. Yet, the success of such
methods depends on major knowledge engineering efforts. The coverage of the
generated explanations depends on those efforts. Vidgof et al. [25] discuss the
high potential of Large Language Models (LLMs) for tasks related to business
process management, including model explanation. Hammond and Leake [8] as
well as Watson [26] encourage the research community to experiment with a case-
based memory for LLMS. The role Case-Based Reasoning (CBR) could play for
generating explanations of structural models like business process models is an
interesting research question.

The paper introduces a novel, retrieval augmented generation (RAG) system
with an LLM using PO-CBR for the downstream task of explaining business
process models. The basic idea of RAG systems is to combine a retriever module
with a generator module [16], i.e. to “decouple the capacity that language mod-
els have for understanding text from how they store knowledge” [12]. We have
investigated the utility of two alternative case retrieval approaches to support
RAG systems:

a) for prompt chaining to overcome the size restrictions of the LLM’s context
window

b) for enhancing prompt templates with in-context examples for the down-
stream task

Approach a) reuses the indexing knowledge from the case base to tokenize the
prompts into a chain. The retriever component in b) provides problem-solution-
pair cases to fill the prompt templates. Approach b) is following the classical
CBR approach where the case base comprises experiential knowledge to directly
solve a downstream task. Both approaches provide in-context learning [2] when
using the retrieval results to activate the appropriate, task-specific context of the
LLM. A standard LLM has been pre-trained on large amounts of text in a task-
agnostic manner. In contrast to parameter fine-tuning by further pre-training
LLMs for a specific task, in-context learning allows the use of the LLM as it
is [2].

For both approaches, we have conducted experiments with two process-
oriented case bases derived from the same repository of 37 process models. They
describe real business processes from different application areas, including hu-
man resources, insurance claims or supply chains. Case base a) comprises the
business process models per se. In case base b) model-text pairs with a textual
explanation as solution part are recorded. Different variants of prompt templates
and prompting strategies (one-shot, few-shot) per approach are explored. The
experimental results show that RAG following approach b) achieves better pro-
cess explanations than zero-shot approaches. The results for approach a) are
not yet convincing. However, some surprising lessons have been learned for both
approaches.

The remainder of the paper is organized as follows. Some foundations of LLMs
are reported as background for the work in Section 2. Related work is discussed



in Section 3. The two approaches a) and b) are presented at a conceptual level
in Section 4 and evaluated by means of a prototypical implementation with a
repository of real process models in Section 5. A conclusion is drawn in Section 6.

2 Foundations of LLMs

LLMs address text generation by a probabilistic model P (y|x; θ) that predicts
an output y for an input x [18]. The parameters θ of the model are learned in a
pre-training process. Instead of learning the conditional probability distribution
for (x, y)-pairs directly, the model is pre-trained for the probability P (x; θ) of
text x itself from large amounts of text. In a standard language model such as
GPT the text is predicted in an autoregressive fashion, predicting the linguistic
tokens in the sequence one at a time. This is usually done from left to right [18].

During pre-training [22], each linguistic token ui from a universe
U = {u1, u2, ...un} is assessed within the context of its k predecessor tokens:
P (ui|ui−k, ..., ui−1). The target function is to maximize the following likelihood:

L(U) =
∑
i

logP (ui|ui−k, ..., ui−1; θ)

for the context window size of k tokens where P is modeled using a neural
network with parameters θ. For details of the pre-training, we refer to the liter-
ature [22].

Prompt engineering tries to find the best prompt to solve a downstream task
with the LLM [18]. A prompt template implements a prompting function fprompt

to modify the input text x into a prompt x′ = fprompt(x) [18]. A naive example
of a prompt template to solve the task of explaining a business process model is
the following.

Consider the standard BPMN 2.0.2 specification. Please create a textual process
description for following BPMN model "Example" serialised in XML. [X]

where [X] is an input slot that can be filled with x. Further slots can be specified
during prompt template engineering, such as slots for an intermediate answer
[Z] or slots to shape the answer space [Y].

Prompt augmentation (or demonstration learning) provides answered prompts
that can be used to demonstrate how the LLM should provide the answer to the
actual prompt instantiated with the input x [18]. Brown et al. distinguish “zero-
shot”, “one-shot”, or “few-shot” learning depending on how many demonstra-
tions (in-context examples) are provided at inference time [2]. Prompt chaining is
“the process of breaking up complex tasks into smaller steps, where each step can
be completed by an independent run of an LLM, and where the output of one or
more steps is used as input for the next” [29]. Prompt chaining can be combined
with prompt augmentation in a way that the prompt is enriched with a different
demonstration example for each iteration in the chain to refine the intermediate
answer, for instance. A systematic survey on typical prompting methods for a
variety of pre-trained language models is provided in the literature [18].



3 Related work

Conversational methods have been applied in the literature [30, 13] for process
modeling tasks. A conversational CBR approach has been used by Zeyen et
al. [30] to support users in formulating small process models as queries to a
PO-CBR system. LLMs have been applied for conversational process modeling
by Klietsova et al. [13]. The conversation with an LLM provides a toolchain to
support modelers in extracting tasks from textual descriptions, modeling and
refining the logic and layout of a BPMN model. 1 Fill et al. [5] go a step further
in fully-automated generating process models from text by means of an LLM.
Another text-to-process approach using LLMs is investigated by Grohs et al. [7].
In addition, the authors aim to identify activities within a process model that
are suitable to be automated by means of RPA. 2 Bellan et al. [1] use in-context
learning to achieve conversational process extraction from text. In contrast to
the text-to-model work reported from the literature, our explanation approach
addresses the opposite direction of the pipeline namely model-to-text. Further,
our RAG system does not require any intermediate representations of the BPMN
models.

Explanation has been considered in PO-CBR for the purpose of understand-
ing similarity functions by visualisation [23]. The objective and the explanation
type differs from our work where a textual explanation type is used to explain
process models. The explanation goal of our work is to increase transparency for
the users how a process is described in a BPMN model, e.g. within a PO-CBR
system or within a traditional business process management system. In partic-
ular, the explanatory texts describe the elements of the process model under
consideration and elucidate the semantics of the element types in BPMN.

Somewhat less related is the work of Upadhyay et al. [24] where a data-to-
text generation approach is developed based on a neural net. Another type of
structural data (database tables on sports events) to be explained and another
method is used to create text from data.

4 Method

The RAG system comprises a retriever module and a generator module as illus-
trated in Fig. 1. The input to the RAG includes a BPMN model serialized into
XML. The output of the RAG is a text answer that explains the BPMN model
to a user who is not familiar with process modeling and BPMN. An example
is depicted in Fig. 2 with the graphical representation on the left hand side
and the serialized, abbreviated form on the right hand side. The rectangles with
the rounded corners depict activities, namely to invoke a risk assessor service
first and, in case of a large loan or in need of a review for the risk, to invoke

1 Business Process Modeling Notation: a standard graphical modeling language for
business processes, see Decker et al. [4] for an introduction.

2 Robotic Process Automation: the automation of tasks which have been performed
by human agents so far by means of software robots technology [28].



Fig. 1: RAG system for explaining business process models.

a loan approval service next. The <bpmn:serviceTask ...> on the right hand
side corresponds with the first activity “Invoke Risk Assessment” (for a more
detailed description including some explanatory remarks on each element type
of the BPMN process, see Section 4.2).

The retriever module differs among the approaches. Approach a) is described
in Subsection 4.1 and approach b) in Subsection 4.2. In contrast to Lewis et
al. [16], we do not train the parameters of the entire RAG system end-to-end.
Instead, in-context learning is applied for both case-based approaches.

4.1 RAG with case-based prompt chaining

In this approach, the retrieval of cases provides indexing knowledge for the de-
composition of a process model for prompt chaining. The intuition behind this is
that process models exceeding the size of the context window can be explained
part by part. For each chunk, explanatory texts are generated and merged into
an overall explanation of the entire process model.

The case base records serialized BPMN models (see right hand side of Fig. 2).
The cases have been automatically sliced into chunks of the same length already.
The size of the chunks and the chunk overlap is specified in terms of number
of tokens. The chunk overlap aims to inform the LLM how the multiple chunks
connect to each other. The set of chunks is sent to a general purpose embedding
model that turns the chunks into embedding vectors. Such neural embeddings
are a common means in LLM’s to represent data. In a RAG system, a similarity
metric (e.g., cosine similarity) is calculated on the embedding vectors. A node
records an embedding vector and the reference back to the actual textual data
from the chunk. These nodes form the index knowledge to represent a BPMN
case.



<?xml version="1.0" encoding="UTF-8"?>
<bpmn:definitions
xmlns:bpmn="http://www.omg.org/spec/BPMN/

20100524/MODEL"
... >
<bpmn:process id="Process_03htkt1" isExecutable=
"true">

<bpmn:startEvent id="Event_1haplvf" name=
"Receive Customer Request for Loan Amount">

<bpmn:outgoing>Flow_0haw72c</bpmn:outgoing>
<bpmn:messageEventDefinition
id="MessageEventDefinition_1xqu562" />

</bpmn:startEvent>
<bpmn:sequenceFlow id="Flow_0haw72c" sourceRef=
"Event_1haplvf" targetRef="Activity_0mew4hd" />
<bpmn:serviceTask id="Activity_0mew4hd" name=
"Invoke Risk Assessor">

<bpmn:incoming>Flow_0haw72c</bpmn:incoming>
<bpmn:outgoing>Flow_1ssbkxk</bpmn:outgoing>

</bpmn:serviceTask>
<bpmn:exclusiveGateway id="Gateway_0wr5ews"
name="If" default="Flow_1wkq6qn">

...
</bpmn:exclusiveGateway>

...
</bpmn:process>

Fig. 2: Sample model for a loan request process in BPMN following [6, p.183].

A user query with a BPMN model to be explained could be sliced into chunks
in the same manner as described above. However, instead of sequentially prompt-
ing the LLM with chunk1 to chunkn, the parts of the process model to be ex-
plained first are prioritized by means of retrieval as follows. The k best matching
nodes from the case base’s index provide the index knowledge for the query, i.e.
their embeddings form latent features to draw the attention of the LLM to a
particular part of the BPMN model to be explained next. For this, the retrieval
result is inserted as context into the prefix of the prompt chunk by chunk for
each iteration through prompt chaining until an explanation for the entire pro-
cess model has been generated.

4.2 RAG with explanatory cases as in-context examples

The retrieval module addresses the explanatory task itself. Process models that
have already been explained are prompted to the LLM as in context-examples.

The case base comprises model-text pairs. Fig. 2 depicts the problem part
of a sample case on a loan request process. The following textual explanation
(created by a human expert, with omissions) forms the solution part of the
sample case:

The "Loan Request" process begins when a customer sends a request for a loan amount via a
message, which triggers the message start event "Receive Customer Request for Loan
Amount". A message start event waits for receiving a message from a participant to start
the process.



Once the request is received, the process moves to the service task "Invoke Risk Assessor".
A service task is a task that uses some sort of service, which could be a Web service or
an automated application.

After the risk assessment, the process reaches an exclusive gateway named "If". A diverging
exclusive gateway (decision) is used to create alternative paths within a process flow,
whereas only one of the paths can be taken. In this case, the gateway represents a
decision point in the process where the flow of control will diverge based on the risk
assessment. This gateway thereby defines a default flow.

If the risk is high, the process will follow the default sequence flow named "high risk",
and reach the throwing message end event "Deny". This type of end event indicates that
a message is sent to a participant at the conclusion of the process.

If the risk is low, ...

If the loan is large or the risk needs review, ...

After the loan approval process, the process reaches the throwing message end event "Return
Approval Response".

In summary, this process model represents a loan request process where the loan request is
received, the risk is assessed, a decision is made based on the risk assessment, and the
decision is communicated back to the customer.

The explanation is a textual process description that coherently describes all
model elements (activities, gateways, events, etc.) and their relationship along
the displayed control flow in the given BPMN model. Additionally, it provides
explanations of the model elements’ semantics, given the underlying defined
business need to explain BPMN models to users lacking expertise on BPMN no-
tations. In the above sample, the semantics of the BPMN element types “message
start event”, “service task” - a special type of activity which is executed by a
service, “exclusive gateway”, and “throwing message end event” is explained.

The retrieval module of the RAG provides the k best matching cases to the
user query. The response is generated in an iterative way following a recommen-
dation from LllamaIndex. 3 First, the best matching case is inserted as context
into the prompt template, along with the query, to generate an initial answer.
This answer, the query and the second best matching case is then put into a
“refine prompt” to generate a refined answer. The refine prompt is applied k−1
times until all cases from the retrieval result have been used as context informa-
tion.

5 Experiments

The two case-based RAG approaches have been evaluated with a sample repos-
itory of BPMN process models. A human expert determined values for some
evaluation criteria from the experimental results. At the end of this section,
some observations and lessons learned from the experimental runs are discussed.

3 https://docs.llamaindex.ai/en/stable/api reference/query/response synthesizer.html,
last access: 03-18-2024



5.1 Experimental data

The data underlying the experiments comes from two repositories of process
models in BPMN taken from two Master theses [6, 10]. The process models de-
scribe real business processes from different organisations and application fields,
including human resource processes, insurance processes, and production pro-
cesses. 37 BPMN models have been selected to achieve examples of various model
complexity in terms of number of tokens, number of model elements and types of
elements. All BPMN flow objects, i.e. events, activities and gateways are counted
as model elements. BPMN types such as an XOR split gateway and an AND
split gateway are counted as types of elements.

A pre-processor slightly abbreviates the XML files exported from BPMN
modeler tools to save tokens as follows. The graphical structuring parts as well as
the diagram interchange information are cut off from the XML files. Those parts
are specified by means of tool-specific XML tags like <extensionElements> ...

</extensionElements> in BizAgi or <bpmndi : BPMNDiagram> ... </bpmndi

: BPMNDiagram> in Camunda. That is, the pre-processing of the user query
requires a tool-specific filter per modeler tool.

The entire experimental data set can be accessed through a GitHub reposi-
tory. 4

5.2 Evaluation criteria and performance metrics

We have defined evaluation criteria to assess the experimental results in a semi-
automated manner. Some performance metrics are specified based on the well-
known precision and recall formulas introduced by Lesk and Salton in the field
of information retrieval in the sixties [15]. The precision metrics identify “hal-
lucinations” by the LLM, which may describe model contents that actually do
not occur in the given BPMN model.

Two pairs of metrics aim to measure the accuracy the explanatory texts
achieve in terms of covering the model elements el and the types of elements
ty that occur in a process model. A model element mentioned in the explana-
tion, such as the activity “Invoke Risk Assessment”, is considered relevant if it
occurs also in the BPMN model. Irrelevant elements are those that have been
hallucinated by the LLM. The accuracy metrics are specified as follows.

precisionel =
|relevant el in explanation|

|el in the explanation|
recallel =

|relevant el in explanation|
|el in the model|

(1)

precisionty =
|relevant ty in explanation|

|ty in the explanation|
recallty =

|relevant ty in explanation|
|ty in the model|

(2)

Further, the extent to which users can easily follow the generated explanation
strongly depends on the order of explanatory passages within the text. Thus, the
next pair of metrics measures whether the model elements are described at the
expected position (pos) within the text following the control flow in the given

4 https://github.com/hoerb1337/LLMmodel2text/tree/main/Data set, last access:
03-25-2024



BPMN model. The performance metrics for the correct positions are specified
as follows.

precisionpos =
|relevant el in explanation at expected position|

|el in the explanation|

recallpos =
|relevant el in explanation at expected position|

|el in the model|

(3)

The last pair of formulas measures the additional explanations of the model
type’s semantics, assuming to facilitate users’ understanding of the BPMNmodel.
For instance, the following sentence belongs to these meta model sentences.

A diverging exclusive gateway (decision) is used to create alternative paths within a
process flow, whereas only one of the paths can be taken.

We assess the number of explanatory sentences on the meta model of BPMN as
follows.

precisionmeta =
|relevant meta model sentences in explanation|

|meta model sentences in the explanation|

sharemeta =
|relevant meta model sentences in explanation|

|ty in the model|

(4)

Please note that sharemeta is not a metric since it may yield a ratio value above
1.0, potentially indicating longer explanations provided per type of flow object.

5.3 Implementation with LlamaIndex

The implementation of the two RAG approaches described in Sections 4.1 and
4.2 is based on an open source orchestration framework for RAG systems called
LlamaIndex 5 [17]. We have used LlamaIndex to bind the general purpose em-
bedding model text-embedding-ada-002 6 by OpenAI to the retriever module
to implement the similarity measure within LamaIndex’ pre-defined Retriever
Query Engine. We bind chat-GPT4 7 to the generator module of our RAG sys-
tem. The tokenizer library tiktoken8 is integrated to split the texts from the user
query and the particular cases into tokens. The interaction between the retriever
and the generator is implemented by a LlamaIndex module called Response Syn-
thesizer. The latter is able to perform prompt chaining at its core [17]. It allows to
feed in any LLM input prompt, get back retrieved context and send knowledge-
augmented prompts to the generator module which are created by customized
prompt templates. The templates and the configurations of all modules, includ-
ing the number of cases to be retrieved, the chunk size, the temperature of the
generator module (to specify the trade-off in GPT models between creativity
and reproducability) are specified in Python scripts.

OpenAI recommends prompting tactics when engineering prompt templates
for their GPT models. We have implemented the following model-specific tactics
for GPT-4. Delimiters like triple quotation marks or XML tags indicate distinct
sections of the prompt to be treated differently. Second, the steps required to
complete a task are specified in a step-by-step instruction. Third, the LLM is

5 for technical details, see also https://docs.llamaindex.ai/, last access: 03-25-2024
6 https://platform.openai.com/docs/guides/embeddings, last access: 03-25-2024
7 https://openai.com/gpt-4, last access: 03-25-2024
8 https://cookbook.openai.com/examples/how to count tokens with tiktoken, last ac-
cess: 03-20-2024



asked to adopt a persona to set its behavior throughout the conversation. The
OpenAI API reference for GPT-49 provides a list of pre-defined messages for
chat completion. A system message describes the perspective that the LLM
should consider when generating text, for instance the perspective of a persona
like a process modeling expert. Such a system message is followed by a user
message providing the actual request to respond to. Technically, orchestration
frameworks like LlamaIndex can call the OpenAI API via Python code with an
array of message objects where each object has a role and content.

We have specified two different templates for the initial (Text QA Prompt)
and the refine prompts (Refine Prompt) per RAG approach. As an example, the
Python code for the refine prompt of approach b) (see Section 4.2) is depicted
in the following.

# Refine Prompt
chat_refine_msgs = [

ChatMessage(
role=MessageRole.SYSTEM,
content="""You are an expert Q&A system with expert knowledge on the business process
modeling language BPMN. You will get presented an exemplary textual process
description for BPMN model "Example", which you should use as an example for the
generation of textual process descriptions for given BPMN model "Explain" serialised
in XML. Additionally, you will get presented your initially generated textual process
description for the BPMN model "Explain". You therefore strictly operate in two
modes when refining existing answers:\n1.

**Add** new information to the original answer, using the exemplary textual process
description.\n2.

**Repeat** the original answer, if the exemplary textual process description is not
useful.\n

Never reference the original answer or the exemplary textual process description
directly in your answer. When in doubt, just add to the original answer."""

),
ChatMessage(

role=MessageRole.USER,
content=(

"""Please create a textual process description for the given BPMN model
serialised in XML. Add to each type of BPMN element used in the BPMN model a short
explanation of this element type’s semantics.

Exemplary textual process description for BPMN model "Example": {context_msg}
BPMN model "Explain" serialised in XML: {query_str}
Initial textual process description for BPMN model "Explain": {existing_answer}
Adapted textual process description for BPMN model "Explain": """

),
),

]

Template variables are filled with the case from the retrieval result to be
sent along as context in the current prompting iteration (context msg), the
user query ({query str}) and the intermediate answer from the previous call
(existing answer) to be refined. In the system role, the LLM is instructed to
behave in a step-by-step manner through the generation of a refined answer.

9 https://platform.openai.com/docs/api-reference, last access 03-18-2024



5.4 Experimental setup

We have conducted experiments for both approaches using the LlamaIndex im-
plementation described above in Section 5.3. We have chosen a size of 4096
tokens per chunk with a chunk overlap of 800 tokens. The tokens have been
created from the XML files following the cl100k base encoding standard. 10 The
chunks are turned into embedding vectors with a maximum size of 8,191 tokens,
aligning with GPT-4’s context window.

The two case bases have been created from the experimental data as follows.
For approach a), the five BPMN models with the highest number of tokens have
been selected as queries. Four of them are larger than the context window of 8,191
tokens itself. For the fifth case it is very likely that the template (see previous
subsection) filled with the corresponding XML file and any in-context example
exceeds the context window size. For approach b) the 33 BPMN models that fit
into the context window size have been extended by explanatory texts created
by a human expert. Six of them have been arbitrarily selected to form the case
base. The remaining 27 are used as query cases for approach b). As a baseline
to approach b), each query has been prompted to a zero-shot approach with
a template using a system message and a straightforward output instruction.
Approach b) has been run in three configurations for k = 1, 2, 3. Each run
(except for the zero-shot baseline approach) is replicated once to observe the
impact of the remaining creativity of the LLM despite the temperature value of
0 is on the experimental results.

5.5 Experimental results

The experimental results for approach a), which tries to overcome the restricted
context window size by means of prompt chaining, show a mixed picture. One
round for model 8-5 generated output that exhibited a very low performance,
reflecting the reason for not evaluating this textual process description. Table 1
depicts the F1 score values of the metric pairs. Especially the two rows for the
values of sharemeta highlight that our approach was not successful in explaining
the semantics of BPMN.

The experimental results for approach b), which uses cases from the case base
as in-context examples, are depicted as average values per run in Table 2. The
pairs of metrics are combined into F1 scores again. Instead of the 27 models as
planned, only 22 models have been considered. The computational time increased
tremendously with model complexity, actually requiring a few minutes for only
one larger BPMN model with around 5013 tokens and 72 model elements. The
quality of the explanations of the larger models decreased rapidly (compare the
discussion in Section 5.6). Since it would have caused costs of more than 3 US
Dollar for generating a single textual process description, we decided to consider
only models with less than 5k tokens.

10 as implemented in OpenAI’s tokenizer library tiktoken, see
https://cookbook.openai.com/examples/how to count tokens with tiktoken, last
access: 20-03-2024



Table 1: Experimental results for approach a) on the five largest process models.
Model 10-2 Model 2-2 Model 8-4 Model 8-5 Model 2-1 Average

No. of tokens 7,018 8,238 8,607 8,634 10,886 8,677

F1el 0.6120 0.6283 0.4138 - 0.6227 0.5692
(repeated) 0.6736 0.6 0.4161 0.4824 0.4576 0.5259

F1ty 0.6667 0.3571 0.88 - 0.3333 0.5593
(repeated) 0.7143 0.3077 0.7273 0.6316 0.2857 0.5333

F1pos 0.6180 0.6147 0.0299 - 0.5208 0.4458
(repeated) 0.5574 0.4356 0.058 0.519 0.2895 0.3719

sharemeta 0.1224 0.04 0.2292 - 0.0169 0.1021
(repeated) 0 0.02 0.1458 0 0 0.0332

precisionmeta 0.8571 1 0.9167 - 1 0.9435
(repeated) 0 1 1 0 0 0.4

All RAG rounds achieved better values than the baseline LLM. The dif-
ferences between two runs in the same configuration are rather small. Surpris-
ingly, the improvements with an increasing number k of in-context examples are
marginal on average.

Table 2: Experimental results for approach b) (avg. for 22 models per run).
LLM (zero-shot) RAG with k=1 RAG with k=2 RAG with k=3

F1el 0.8130 0.8855 0.8790 0.8713
(repeated) - 0.8646 0.8521 0.8736

F1ty 0.7193 0.8676 0.8652 0.8698
(repeated) - 0.8509 0.8574 0.8625

F1pos 0.8071 0.8251 0.8234 0.8301
(repeated) - 0.8353 0.7995 0.8402

sharemeta 0.2289 0.5575 0.4780 0.5757
(repeated) - 0.5695 0.4881 0.5556

precisionmeta 0.6307 0.9811 0.9813 0.9924
(repeated) - 0.9430 0.9738 0.9451

5.6 Lessons learned

In addition to the measured values, we made some surprising observations in the
course of the experiments.

Setting the temperature parameter to 0 did not prevent the RAG from gener-
ating variants of output in the different experimental runs. Note that at the end
of our work, OpenAI released an updated version of GPT-4 that now includes
additional parameters to control non-deterministic behavior.11 Since different

11 see https://openai.com/blog/new-models-and-developer-products-announced-at-
devday, last access: 03-26-2024



explanations for the same model might even be a benefit for the intended users
it is not yet clear whether the additional parameters were useful.

Tests with inserting meta knowledge on BPMN into the prompt instructions
did not change the quality of results. This is in contrast to the results reported
by Fill et al. [5] who experimented with an older version of GPT. It seems that
the meta knowledge on BPMN is an inherent part of GPT-4 already since the
training set might have included process model descriptions in BPMN.

The performance decrease with increasing model complexity was steady for
any prompting strategy. In particular, we got a sense of increasing difficulty
to map the described model elements and their relationships to the original
BPMN model. For larger models, typically only parts of the process are correctly
described while others - at random locations in the process model - did achieve
explanations that are not useful. For instance, the LLM condensed several model
elements into a high-level description instead of describing each of them. This
makes it very difficult for novice users to understand the process model on the
basis of the explanation. There seems to be a hidden capability threshold of
somewhere around 3800 tokens which is less than half of GPT-4’s context window
of 8,191 tokens.

This inherent threshold might also provide a reason for the following, a
bit disappointing observation. Increasing the number of in-context examples k
achieves only marginal improvements compared to k = 1. In the light of en-
ergy consumption, the retrieval of a single best matching case seems the most
recommendable strategy at the moment to configure the RAG.

6 Conclusion

In this paper, we have presented a RAG system based on the framework Lla-
maIndex and LLM GPT-4 with the aim to generate explanatory texts describing
business process models for users who are not familiar with process modeling.
Two alternative approaches of case-based support have been developed. While
approach a) addresses reusing the partition of process cases into chunks for
prompt chaining approach b) retrieves model-text-pair cases as in-context ex-
amples. The experiments for approach a) fail presumably at the limit of current
LLM’s capability to deal with larger context information. The experiments for
approach b) succeed in generating explanations that cover the particular model
elements, their control flow as well as the semantics of the BPMN modeling lan-
guage. Surprisingly, the quality of the results are of nearly the same quality for
configurations of one up to three in-context examples retrieved from the case
base.

Meanwhile, GPT-4 provides pre-view versions with a context window size of
128k tokens.12 It is likely that the capability threshold reported above is shifted
beyond the 11k tokens of our largest model from the experimental repository.

12 see https://openai.com/blog/new-models-and-developer-products-announced-at-
devday, last access: 03-26-2024



Repeating the experiments for both approaches, prompt case-based chaining (ap-
proach a)) and the use of explanatory cases as in-context examples (approach b))
with the new models seems promising. We think that the current experimental
results on a case-based memory for model-text-pairs (approach b)) demonstrate
the feasibility of using CBR retrieval in RAG systems for generating text expla-
nations of structural models.
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