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Abstract
A disadvantage of Software Agents is their lack of Learning capability. Integrating Machine Learning into Software
Agents has been applied several times. In most of the works, one single agent is considered for this to confirm and
demonstrate the functionality. Scaling the problem up to a Multi-agent scenario is a resource-intensive challenge
but has not been tackled yet for more than two agents. This position paper describes an approach to integrate
Deep Reinforcement Learning into a Multi-Agent System of autonomous BDI agents interacting in a Mobility on
Demand application.
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1. Introduction

Autonomous Ride-hailing applications are emerging from the recent development of self-driving cars
with the interactions of novel Autonomous Mobility on Demand (AMoD) systems like Ride-Sharing
and Ride-Hailing. In Ride-hailing, a fleet of autonomous vehicles serves mobility for customers acting
as Robotaxis. Nowadays, companies like Waymo actively develop this form of mobility as customer
service. Waymo already uses autonomous transportation with a fleet of vehicles in multiple cities
in the US1. The interest in Autonomous Mobility on Demand increased over time. Since the acting
fleet consists of multiple cooperating autonomous vehicles, research has been done to optimize several
challenges like trip assignment, vehicle repositioning, scheduling, planning, and routing using Machine
Learning (ML) approaches [1, 2]. Building intelligent vehicles as agents is crucial for reliable and robust
driving behavior in the real world. Therefore, we consider Agent-oriented Programming (AOP) as a
suitable approach. In AOP, the most predominant Software Agent architecture is the Belief-Desire-
Intention (BDI) Agent architecture. It supports the general sense-think-act cycle of cognitive Agents
with additional components of decision-making and planning [3]. The main characteristic of Software
Agents is that the capabilities have to be implemented explicitly into the Agent architecture. However,
the lack of learning capability represents a disadvantage for intelligent agents as they operate in a
distributed manner and have to adapt to new situations and act for the overall performance of a whole
fleet. Bordini et al. state that the pure BDI architecture is not suitable for learning capabilities, and
they suggest general approaches to support the BDI architecture with AI techniques such as Machine
Learning [4]. In Reinforcement Learning (RL), the learning process contains the learning algorithm,
the Agent’s environment, and the application domain [5]. The learning problem is defined by the
underlying Markov Decision Process (MDP). In general, the main research focus is directed toward the
optimization of learning algorithms and the learning process itself. This entails various tasks such
as data preparation, designing RL settings, algorithm selection, and ultimately evaluating learning
outcomes within a simulated environment. The architectural components of the agent generally re-
ceive less research attention in comparison. Both concepts, BDI and RL, provide the capability that a
considered agent can interact with its environment by sensing and acting. Integrating ML techniques
into Software Agents is a recent and open issue in AOP [4, 6]. One of the key limitations of the BDI
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architecture is the lack of generating new plans during processing [4]. A thorough survey concerning
the BDI architecture and its extension capability has been done by Silva et al.[7]. Our paper tackles
the Trip Assignment Problem (TAP) with DRL. We extend Autonomous BDI Agents with the capability
of DRL for AMoD. In this regard, we want to integrate the learning capabilities into a BDI Vehicle
Agent. We develop the BDI agents with the Jadex Agent Development Framework and Deep Java
Library (DJL)2 for integrating Deep Reinforcement Learning. We evaluate the decision results with
two alternatives, namely purely DRL and an explicitly formulated utility function in the Vehicle Agent
using MATSim, a traffic simulation. Our work results in a high-level decision-making framework for
processing Trip requests and the cooperation of vehicle agents. We formulate the cognitive process of
an intelligent software agent that learns by interacting with its environment via DRL. The Research goal
is schedule optimization on a fleet level and comparison with MATSim. Thus, our research questions are:

• How is DRL integrated into multiple BDI agents interacting with each other?
• What impact does DRL that is integrated into BDI agents have in Ride-Hailing, especially for Trip

Request Assignment?
• Is the BDI-DRL integration approach better than conventional Scheduling approaches?

2. Background

2.1. BDI architecture

The BDI-Agent architecture has its roots in the integration of cognitive behavior into Multi-Agent
Systems. The main components are the Belief, Desires, Intentions of an agent. A belief base of a vehicle
agent 𝑣𝑖 contains the facts about the environment, e.g. a statement which is true or false [8]. The agent
contains multiple goals that are backed with plans. A single plan contains several steps of action. The
vehicle agent processes these actions to accomplish its goals. The architecture is introduced in[8]. The
BDI-DRL agent builds upon this architecture and is introduced in Section 5.

2.2. Deep Reinforcement Learning

Deep Reinforcement Learning comprises the interaction of a reinforcement learning agent in an environ-
ment where the policy function is learned by a neural network. In recent works, this learning method
has shown promising results not only for domains like games [9] but for Multi-agent constellations in
the ride-hailing domain [1], [10]. In our work, we will build up the utility component of the vehicle
agents utilizing deep Q-learning. The data-driven approach consists of the reward function, which
comprises feedback for the vehicle agent concerning its decision to accept or delegate an incoming
trip. With a synthetically generated trip dataset, we will train the learning-based ML component and
therefore the decision-making of the vehicle agent. This procedure also affects the further phases of the
BDI cycle.

2.3. Trip Assignment in Mobility on Demand Systems

AMoD [11] comprises novel types of transport services like ride-sharing and ride-hailing. The difference
between both types is that in ride-sharing, multiple customers share a single vehicle. In ride-hailing,
a single customer is still transported from an origin to a destination. Since the focus lies on a single
fleet of autonomous vehicle agents, we assume a cooperating setting, where the vehicles delegate
new trips to each other and try to maximize the individual utility and the global fleet utility. A trip
assignment is where customer requests are assigned to the operating vehicle agents. We focus solely on
the ride-hailing scenario, further described in the application scenario.

2https://djl.ai/



3. Related Work

Broekens et al. apply RL for action-rule preferences in BDI agents to improve their behavior [12]. By
developing the agents in GOAL [13], an RL approach for rule selection is demonstrated. Considering
these learned rules, the corresponding actions are executed. Singh et al. [14] model context conditions for
plan selection as decision trees. Context conditions are defined as boolean formulas and are generally
specified at design time. Agents can learn from their experiences by estimating the probability of success
for different plans. The balance between the exploration of new plans and the exploitation of known
successful plans is also considered. Faccin demonstrates the learning procedure in plan-based learning
by BDI agents [15]. Karim et al. have mentioned BDI plans and goals as an intuitive representation
of knowledge [16]. In [17] a two-agent setting is investigated for a specific domain. Therefore, we
further see our approach as possible to investigate and address its scalability. Integrating BDI agents
with Machine Learning has been covered in the survey of Erduran [18]. The author lists different
approaches in supervised and unsupervised learning as well as RL approaches for different application
scenarios and claims that most of the works that have been done in this area represent demonstrations
or first approaches. In [19] and [20], the vehicle fleet positioning is tackled with cluster analysis and
geographic information data. In [21], decision trees are used for a non-deterministic environment
which is improved incrementally. The goal is to extend the BDI architecture to provide a refinement
of the agent’s plans, where each plan is represented as a decision tree. Another work, where the
plan component is extended is in [22]. Here, the authors also tackle the scalability of the extended
agent architecture. The specific learning process is the application of decision trees for the plans in
different situations. The result is demonstrated by using an energy management controller. In [23],
logical decision trees and inductive logic programming are used to learn when the agent’s plans are
successfully executable while prevailing the practical reasoning. Therefore, a hybrid approach for
integrating RL into the BDI architecture is presented in [24]. In [25] the mental state representation
of the agent is used for learning purposes. Therefore, GOAL as a programming language is used. An
extension of the BDI architecture is presented in [26], where the BDI architecture is described as a
human-like and abstract reasoning model. Here, the author also relates the root of BDI architecture to
folk psychology with Q-Learning. The work of Bosello and Ricci [27] considers the BDI architecture
of JASON Agent development framework with the distinction of hard and soft Plans. Here, the hard
plans are programmed explicitly, whereas the soft plans are learned by the agent’s experience which is
realized by the RL component. On a conceptual level, the capabilities of a BDI Agent are considered by
the usage of the sense-think act cycle. Khaidem et al. [28] apply Reinforcement Learning for MATSim by
formulating a Partially Observable Discrete Event-based Decision Process (PODEDP). It is a modification
of a partially observable Markov Decision Process (POMDP), where the event-based nature of MATSim
acts as the environment of the RL setting. In the work of Pettit et al. [29], mobility on demand is tackled
using Deep Reinforcement Learning. Our work differentiates from previous studies by focusing on a
fleet of agents that interact with one another. In addition to the scenario, we aim to advance scalability
by optimizing the driving and charging behaviors of an operational fleet of vehicles. While our approach
shares similarities with existing work, including the type of dataset used and the formulation of DRL
components, our planned contribution is distinct. We intend to integrate DRL with BDI agents in a
multi-agent scenario, moving beyond the single-agent context to apply DRL to multiple software agents.

4. Problem formulation

The information a vehicle agent can perceive is represented in the States. For the composition of the state
space, we consider the Observations the agent perceives during processing from different components.
The agent has an internal state component, which has reasoning capabilities to produce an output e.g.
taking an action or deciding to charge the battery. While interacting with other agents, the agent gets
information about the environment, from other agents. Some elements from the problem formulation
are taken from [30]. The assignment of incoming trip requests to vehicles in a service fleet is defined as



the TAP [31]. TAP is defined as follows: Given is a fleet of vehicle agents 𝐴𝐺 = {𝑎𝑔0, 𝑎𝑔1, ..., 𝑎𝑔𝑁−1}
of size 𝑁 ≥ 2 and a set of trip requests 𝑇𝑟 = {𝑡𝑟0, 𝑡𝑟1, ..., 𝑡𝑟𝑁−1}. An 𝑖-th trip request 𝑡𝑟𝑖 contains the
following attributes:

𝑡𝑟𝑖 = (𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐼𝑑𝑖, 𝑗𝑜𝑏𝐼𝑑𝑖, 𝑡𝑟𝑖𝑝𝑇𝑦𝑝𝑒𝑖, 𝑏𝑜𝑜𝑘𝑖𝑛𝑔𝑇 𝑖𝑚𝑒𝑖, 𝑉 𝐴𝑇𝑖𝑚𝑒𝑖, 𝑙𝑠𝑡𝑎𝑟𝑡𝑖 , 𝑙𝑒𝑛𝑑𝑖) (1)

A vehicle agent 𝑎𝑔 ∈ 𝐴𝐺 is defined as:

𝑎𝑔𝑖 = (𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝐼𝑑𝑖, 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑖, 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖, 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖) (2)

In DRL, we consider a Markov Decision Process (MDP) which is defined by the tuple ⟨𝑆,𝐴, 𝑃,𝑅, 𝛾⟩,
where 𝑆 ∈ R𝑑𝑠 denotes the state space, and 𝐴 ∈ R𝑑𝑎 denotes the action space, the transition function
𝑃 : 𝑆x𝐴x𝑆 → [0, 1] and the reward function 𝑅 : 𝑆x𝐴 → R, as well as the discount factor 𝛾 ∈ [0, 1).
In short, we formulate TAP as a DRL Problem with:

1. State definition: 𝑠𝑖 = (𝑏𝑎𝑡𝑡𝑒𝑟𝑦_𝑙𝑒𝑣𝑒𝑙, 𝑛𝑐_𝑡𝑟𝑖𝑝𝑠, 𝑡𝑟_ℎ𝑖𝑠𝑡𝑜𝑟𝑦, 𝑡𝑟_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒, 𝑡𝑟_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛, 𝑠𝑡𝑎𝑡𝑢𝑠) ∈
𝑆, The set of all possible states in the environment.

2. Action definition: 𝑎𝑖 = {𝑐𝑜𝑚𝑚𝑖𝑡_𝑡𝑟𝑖𝑝, 𝑛𝑒𝑔𝑜𝑡𝑖𝑎𝑡𝑒_𝑡𝑟𝑖𝑝, 𝑏𝑖𝑑, 𝑑𝑜_𝑛𝑜𝑡ℎ𝑖𝑛𝑔, 𝑟𝑒𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒} ∈ 𝐴, the
set of all possible actions the vehicle agent can take.

The Reward function 𝑅𝑡 is defined as:

𝑅𝑡 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−50, 𝑖𝑓 20 ≥ 𝑏𝑎𝑡𝑡𝑒𝑟𝑦_𝑙𝑒𝑣𝑒𝑙 > 0,
−100, 𝑖𝑓 𝑏𝑎𝑡𝑡𝑒𝑟𝑦_𝑙𝑒𝑣𝑒𝑙 = 0,
−20, 𝑖𝑓 𝑡𝑟𝑖𝑝_𝑚𝑖𝑠𝑠𝑒𝑑,
+10, 𝑝𝑒𝑟 𝑡𝑟𝑖𝑝_𝑠𝑢𝑐𝑐𝑒𝑠𝑠,
0, 𝑒𝑙𝑠𝑒.

The reward values are initially set and will be refined or adjusted later. The action-value function
approximated by a neural network with parameters 𝜃, representing the expected cumulative reward of
taking action 𝑎 in state 𝑠 and following the policy thereafter. The Bellman equation for the Q-function
is given by:

𝑄(𝑠, 𝑎; 𝜃) = E𝑠′∼𝑃

[︂
𝑟 + 𝛾max

𝑎′
𝑄(𝑠′, 𝑎′; 𝜃)

]︂
,

where 𝑟 is the reward, 𝑠′ is the next state, 𝛾 is the discount factor, and 𝑃 is the state transition probability.
An experience replay buffer ℬ is used to store transitions (𝑠, 𝑎, 𝑟, 𝑠′, done). The Loss function for the
Q-network update is defined as:

ℒ(𝜃) = E(𝑠,𝑎,𝑟,𝑠′,done)∼𝒟

[︃(︂
𝑟 + 𝛾max

𝑎′
𝑄target(𝑠

′, 𝑎′; 𝜃−)−𝑄(𝑠, 𝑎; 𝜃)

)︂2
]︃

The Q-network is updated by minimizing this loss using stochastic gradient descent.

5. BDI-DRL architecture

An overview of integrating DRL into the BDI agent architecture with an extended simulation environ-
ment in the AMoD application is presented in Figure 1. Here, the BDI vehicle agent architecture is
depicted that interacts with the traffic simulation MATSim via the BDI-ABM interface as well as commu-
nicating with other agents. The architecture is based on [8] and is extended with further components
that represent the elements of DRL. These DRL components are listed in Table 1 with the decision to
integrate the components into the vehicle agents internally or externally. There are different ways to
combine DRL algorithms with software agents. One approach is to use DJL to integrate algorithms
and methods written in other programming languages. Several ML-based Java libraries are listed in



Table 2 which can also be considered, each of them coming with individual advantages. In the table,
we denoted whether the library contains RL/DRL, which programming language it is based on, and
whether GPU-enabled processing is supported. After comparing these tools, we use DJL. The advantage
is, that it is based on the JVM and provides a tight integration. Furthermore, algorithms written in
PyTorch or TensorFlow can be integrated via a corresponding engine. The result of the DRL algorithm’s
action is the vehicle agent’s selected plan. One plan in turn can contain a sequence of actions. The input
data, as observed, is the current state of a vehicle agent. The training approach of the Deep Q-Network
(DQN) is conducted as follows: During the decision process of the vehicle agent, we store its current
state, the decision-making components, and the actions leading to a new state. For the new state, we
calculate the immediate reward. As time series data, we can use the vehicle agent’s historical actions
or deliver real-world synthesized compressed trip requests. We plan to provide a direct invocation of
DRL within the BDI agent architecture since this is useful when agents have to make decisions based
on the neural network output. This integration offers a synergy that leverages the strengths of both
approaches, resulting in enhanced decision-making capabilities. One of the key advantages of this
integration is the ability to enable real-time learning and adaptation, allowing agents to evolve based
on changes in their environment. This capability not only improves the agents’ performance but also
enables them to predict future events or behaviors by analyzing historical data.

Figure 1: The BDI-DRL architecture



Table 1
Decision of integrating DRL components into the BDI Architecture

DRL Component Jadex BDI Integration
State Beliefs internal/external
Action Plan internal

Learning parameters (𝛼, 𝜖, 𝛾) - internal/external
Reward - external

Reward Model Goal/Plan internal
DQN Goal/Plan internal

Value Function Goal/Plan internal

Table 2
Deep Learning libraries in Java

Library Language RL/DRL GPU Comment
deeplearning4j (DL4J)3 Java Yes Yes RL components deprecated
Deep Java Library (DJL) Java/Python Yes Yes PyTorch & TensorFlow integration

TensorFlow Java4 Java/Python Yes Yes TensorFlow on Java Virtual Machine
Weka5 Java No No Data Mining

Neuroph6 Java No No Last update in 2020
Encog7 Java No No Last update in 2017
JavaML8 Java No No Last update in 2017

6. Next steps and Discussion

The investigated platforms bring different functionalities and provide different predefined architectures
therefore, investigating which approaches have been applied and also have been investigated in the
research field was important to point out potential environments. Our choice is also debatable. This
work represents an example of the application-oriented deployment of autonomous vehicle agents with
the capabilities of DRL. As potential impacts, we see the issue of real-world deployment of learning
agents, where in our agent architecture, we take advantage of cognitive functions enhancing the limits
of DRL agents. To be more precise, we want to let agents learn the behavior of high-level decision-
making for the given domain. This work follows the call of [4] in which the lack of mental capacity of
learning agents is discussed concerning stable applications. For evaluation, the presented integration
approach will be compared with a utility-based approach and with other learning algorithms. As time
series data, we can use the historical actions of the vehicle agent or furthermore, deliver real-world
synthesized compressed trip requests. How those trip requests are generated, is explained in [19]. In the
planned experiments, we consider a comparative study with the following two types of vehicle agent
configuration with Type 1: 𝑎𝑔𝐵𝐷𝐼 and Type 2: 𝑎𝑔𝐵𝐷𝐼−𝑅𝐿. Type 1 represents the agent framework
without DRL and thus a purely symbolic approach and Type 2 represents the presented contribution of
DRL integration. For each configuration, we investigate the training phase and testing phase. We split
the dataset into a training and test phase. Learning configurations and parameters will be defined. We
start the training phase by performing 15.000 epochs for DRL. After each Simulation run, we compare
the results with a solely BDI-based MATSim simulation and the considered data set is from the bike
sharing service Call a Bike from Germany10.

3https://github.com/deeplearning4j/deeplearning4j
4https://www.tensorflow.org/jvm/install
5https://waikato.github.io/weka-wiki/
6https://neuroph.sourceforge.net/download.html
7https://www.heatonresearch.com/encog/
8https://github.com/AbeelLab/javaml
9https://docs.oracle.com/javase/8/docs/technotes/guides/jni/
10https://www.deutschebahnconnect.com/en/products/call-a-bike
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