
Beyond Theory: Deployment of a Real-World
Localization Application as Low Power WSN

Clemens Mhlberger, Marcel Baunach, Reiner Kolla
University of Wuerzburg, Germany

Copyright c© 2007 IEEE. Reprinted from 2nd IEEE International Workshop on Prac-
tical Issues in Building Sensor Network Applications (SenseApp).

This material is posted here with permission of the IEEE. Internal or personal use
of this material is permitted. However, permission to reprint/republish this ma-
terial for advertising or promotional purposes or for creating new collective works
for resale or redistribution must be obtained from the IEEE by writing to pubs-
permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

1

Beyond Theory: Development of a Real World

Localization Application as Low Power WSN

Marcel Baunach, Reiner Kolla, Clemens Mühlberger
Department of Computer Engineering, University of Würzburg, Am Hubland, 97074 Würzbrug, Germany

Email: {baunach, kolla, muehlberger}@informatik.uni-wuerzburg.de

Telephone: +49 (0)931-888-6716, Fax: +49 (0)931-888-6702

Abstract—The real-world implementation of a just theoreti-
cally elaborated idea is sometimes cumbersome, often a couple
of obstacles have to be overcome. That’s likewise in the area
of Wireless Sensor Networks (WSN), but complicated by some
further restrictions, e.g. little memory or low power consumption.
One well-known and often required application within WSN
is the geographical localization of several sensor nodes. That’s
why this paper deals with some problems arising during the
development of a WSN using the time difference of arrival
(TDoA) of ultrasound and radio signals for positioning. Its focus
is on handling of microcontroller difficulties like little memory,
low computational power or low energy consumption as well as
hardware driven failures like inaccurate measurements or node
failures.

Index Terms—real world implementation, WSN, TDoA local-
ization, ramping, square root optimization

I. INTRODUCTION

Lots of WSN applications are in need of knowledge about

the precise positions of several objects. Because this is an

elementary challenge, quite a number of (theoretical) solutions

using different methods for this problem exist, like Active Bat

[1], Cricket [2], [3], DOLPHIN [4], AHLoS [5] or SNOW

BAT[6]. But their implementation is said easier than done,

because some algorithms make excessive use of floating point

(FP) numbers or complex (geometrical) functions like square

root or arc tangent. Those are infeasible or not executable

within an adequate amount of time by lots of microcontrollers.

Some developed localization systems lack of fault tolerance

or are not capable of real-time operation, which however is

sometimes necessary to gain accurate positions.

This paper describes our own experiences gained during

the development of a WSN based localization system and

some of the lessons we learned. For system setup we used

the sensor node platform SNOW5[7], because wireless radio

communication is yet available and supported as well as its

great expandability to stack further sensor modules. Thus, this

field report first introduces an idea for a WSN localization

system using TDoA in section II and will then analyze

physical aspects of the measurement procedure in section

III. Afterwards one possible implementation for an ultra low

power microcontroller as used in SNOW BAT will be worked

out, keeping an eye on low computational power as well as on

fault tolerance of the WSN (see section IV). A short summary

closes this paper.

II. HUNDRED WAYS OF LOCALIZATION

This section will introduce some characteristics for local-

izing systems (II-A). Next, a few approaches for distance

measurement will be analyzed (II-B), a specific one will be

selected for further examination (II-C).

A. Characteristics

Before examining some techniques for distance measure-

ment, we will characterize localization systems by using the

following parameters:

• The objects of the underlying system can be localized

either relative to each other or absolute to a given

reference point and coordinate system respectively.

• The process of localization can occur either periodically

or sporadically, just when required.

• The initiator of the localizing process can either be the

object to be located itself or (objects of) the surrounding

environment.

• One can also distinguish between active, passive and

interactive localization. The first means that an object

determines its position autonomously within an environ-

ment which is passive in this regard. Whereas the second

means that the position of an object is determined solely

by the environment. Finally, interactive mode combines

the two previous methods and thus requires an adequately

equipped object and environment.

• The implemented algorithm can support only two-

dimensional coordinates for easier calculations or – more

generally – even three-dimensional ones.

• The estimation of distances and positions respectively can

be fast enough to track mobile nodes up to a certain

velocity or to just locate static ones.

• As mentioned in Bulusu [8], localization systems can

also be determined by the coupling of the nodes which

already know their positions, so-called anchor nodes. In a

tightly coupled system the anchors are wired to a central

unit whereas all nodes of the loosely coupled system use

wireless communication.

• Also according to Bulusu [8], in a centralized structure

a centric device controls measurement and calculates the

different positions, unlike in decentralized systems. The

first one requires central units with sufficient compu-

tational and managerial power, the latter causes con-

siderable network traffic resulting in increased energy

consumption of the overall system for extra coordination.

In hierarchical structures special units are privileged,

that means more to control but also more to compute.

Additionally, an iterative system needs a few runs for

exhaustive localization.

B. Distance measurement methods

As mentioned in Beutel [9] and Tseng et al. [10], several

techniques for distance measurement exist, each observing

different physical quantities:

• received signal strength (RSS)

This method tries to estimate the distance between two

objects by measuring the strength of a received signal, as

implemented for example by Hightower and companions

[11] or at RADAR [12]. In accordance with Coulomb’s

law the field strength of an omni-directional electric field

depends on the square of the distance from the field

emitter. Indeed, the propagation of an electric field not

only interferes heavily with the surrounding area but

is also influenced by the antennas used or their design

respectively. Thus an electric field spreads typically ir-

regular in space, so it is hard to detect distances very

precisely by RSS measurement (cf. Savvides et al. [5]).

• angle of arrival (AoA)

It is also possible to determine one’s position by tri-

gonometrical calculations. Therefore you have to use

hardware, which is able to detect the angle of a received

signal. But this is the disadvantage at the same time,

because sensing angles is somewhat difficult and the ad-

ditionally required hardware is sometimes expensive. For

example the Cricket Compass [2] needs five ultrasonic

(US) receivers at each mobile node, a so called compass.

• time of arrival (ToA)

Distance can be estimated also by measuring the time

of arrival of an adequate signal. If for example two

objects make a two-way handshake, the distance can

be calculated by measuring the round-trip time of this

signal at known signal speed. But you have to distinguish

very well about the signal type to be used, because the

slower the signal the longer takes the measurement and

in contrast the faster the signal the more precise clocks

for time measurement are essential. Especially the two-

handshake method requires signal transceivers on each

object.

• time difference of arrival (TDoA)

Two signals traveling at different but known speeds are

needed therefore. Distinctly diverging velocities make

measurement of their time of arrival easier, that’s why

a combination of radio and ultrasound is very popular. In

comparison to the two-way handshaking ToA using ultra-

sound, the devices of TDoA don’t require a transceiver

each and the slower ultrasound travels just one-way.

Therefore such measurements can be managed by TDoA

within less time and simply less ultrasonic hardware.

As RSS indication lacks accuracy and angles are hard to

sense exactly for AoA, we face the choice between ToA and

TDoA. Both methods are somewhat similar, but for the two-

way handshaking ToA each node requires transceiver units.

The measurement duration also mainly depends on the time

of flight of the slowest signal used. So, if both methods would

use ultrasound, TDoA could measure at ideal case almost

twice as often as the two-way handshaking ToA (cf. Fig. 1).

Thus we will examine TDoA in detail before we will develop

an algorithm for localization by means of TDoA delivered

distances.

C. TDoA – functionality and usage

As mentioned above, two signals traveling at different

speeds are required. Radio and ultrasound are suitable, because

radio travels at speed of light and is on dimensions faster

than ultrasound. This makes the whole procedure comparable

with a thunderstorm: you first see the flash and after a while

you can hear the thunder. As denoted in Fig. 1, a sensor

node m transmits a radio packet (flash) at time tRF TX to

signalize a subsequently sent ultrasound (thunder) at time

tUS TX . Another sensor node s receiving the radio packet at

time tRF RX activates its ultrasonic receiver. If s also detects

an ultrasonic signal at time tUS RX , the distance d can be

calculated from additionally known velocities of ultrasound

vUS and radio vRF (cf. Tseng et al. [10]):

d =
(

(tUS RX − tRF RX) − (tUS TX − tRF TX)
)

· vUS · vRF

vRF − vUS
(1)

The sensor nodes must not only know the exact velocities of

radio and ultrasound, but they also need to detect the precise

point in time of transmission or reception respectively.

A few configurations for the realization of TDoA using

ultrasound and radio within a WSN are conceivable. First,

the WSN may only consist of static nodes. But if so, the

positions of the nodes must be determined once and are valid

forever. The other extreme will be a WSN made up of only

mobile nodes. This configuration is much more complex and

additional hardware like GPS modules for knowledge about

the approximate position of some sensor nodes is essential if

not only relative and inaccurate positions are desired. More

interesting but quite simple realizable is a mixture of anchors,

i.e. static nodes with known positions, and mobile ones which

need to be localized.

In this context, the localization process can be initiated

either by the static anchors like in Cricket [13] or by a

Fig. 1. Two-handshake ToA and TDoA in principle

mobile one itself. The latter is more energy-saving because

the static nodes have to turn on their ultrasonic receivers not

until they notice a radio signal from a mobile one initiating its

localization. Otherwise they would have to send their signals

continuously and periodically to avoid missing a mobile one

but even if no mobile node is nearby.

We want to emphasize the wireless networking character

as well as the distributed nature of the system to-be. That’s

why we prefer a loosely coupled and decentralized system

in contrast to other existing systems like Active Bat [1].

Additionally, for a loosely coupled system, there are no cables

to be laid and you are more independent during installation.

Within a centralized system, the central unit with more com-

putational power can make most of the calculations whereas a

decentralized system would have to calculate everything within

the network, but on the other hand seems to be more fault

tolerant against single point of failure. A central unit could

also lack scalability if the number of maximum connections

is limited as with Bluetooth [14]. Next, we will have a detailed

look at the TDoA distance measurement process.

III. TDOA MEASUREMENT IMPROVED

The localization algorithm should calculate a concrete and

accurate position for the mobile device, using only information

like the coordinates and detected distances of sufficient static

anchors. Because these coordinates are fixed and well-known

only the measured time difference of arrival of radio and

ultrasound need to be converted into a concrete distance. So,

this section first presents one possible realization of a TDoA

system (III-A) and derives therefrom an improved distance

estimation algorithm (III-B). Next, the physical phenomena

ramping will be examined (III-C) as well as the possibility of

multichirping (III-D).

A. One realization of TDoA

As mentioned above, if a mobile node wants to get current

position data, it sends a certain radio packet to start the local-

ization process. Because radio signals in general range much

further than ultrasound, a single hop message is sufficient and

no routing is required. SNOW BAT calls such a message chirp

allocation vector (CAV) which contains all data necessary, e.g.

• the ID of the mobile transmitter,

• its last known position posold,

• its maximum speed vmax and

• a duration ∆tchirp = tUS TX − tRF TX .

SNOW BAT expects the mobile node to chirp, i.e. to send an

ultrasonic pulse, subsequent to and ∆tchirp after this CAV.

Since a square wave signal is sufficient for stimulating the

ultrasonic transmitter, for example within the MSP430x1xx

MCU family [15], it may be created from time intervals, which

are generated by the capture/compare block of either of the

MCU’s timers.

In contrast to radio, ultrasound does not emit omni-

directional but ideally as spherical sector (cf. Fig. 2), defined

by its aperture angle θ (typically θ ≈ 30◦) and its range dUS ,

Fig. 2. Anatomy of an emitted ultrasonic signal

i.e. the length of its surface of revolution. Supposed, the maxi-

mum range max dUS of the ultrasonic transmitter used is about

10 m, a radio signal would just need max ∆tRF = 33.3 ns
to travel that distance. This is not only much too short to

be detected by microcontrollers running at some MHz, but
also the transmission time of a CAV sized 50 B will already

take ∆tCAV = 1.6 ms at an exemplary data rate of 250 kbps.
Hence the result of the distance measurement won’t be falsified

significantly, supposing the time difference of arrival of the

radio signal as

∆tRF = tRF RX − tRF TX = 0 ms. (2)

All static nodes receiving a CAV must record the time of

arrival of this radio packet at first and in addition activate

their US receivers immediately, not to miss the following US

chirp. But an anchor receiving a CAV could be out-of-range

for the corresponding US signal or the chirp itself could be

too weak for clear detection. Taking (2) into account, to save

energy any anchor needs to activate its US receiver after CAV

reception for only at most ∆ttimeout = ∆tchirp + max dUS

vUS
.

Seemingly, another advancement could be a prior test, whether

the anchor is within the ultrasonic range of the CAV sending

mobile node and thus has to activate its US receiver, or

not. But keep in mind, this calculation does not only need

detailed knowledge about the last known position posold and

the maximum velocity vmax of the mobile device as well as the

maximum range of the ultrasonic emitters, but its computation

could also take longer than the intended time between radio

signal and chirping, and thereby causing the real chirp to be

missed.

However, if a static node receives a chirp after a foregoing

CAV, it must also record the chirp’s time of arrival and can

shut down its ultrasonic receiver afterward for energy savings.

The ultrasonic detection can be realized by an analog-to-digital

converter or by a capture/compare unit, which will be more

adequate and more energy-saving.

B. Distance estimation

Assuming the things specified above, the distance d between

the chirping mobile node and the receiving anchor can be

computed then solely by the static node using an improved

version of (1) as follows:

d = (tUS RX − tRF RX − ∆tchirp) · vUS (3)

In contrast, this equation contains no more division and thus

saves CPU time. It demonstrates as well, the more precise

the time recording and the determination of vUS are, the

more accurate is the calculated distance. That means, the

interrupt latency at the nodes must be kept short and constant

at most, especially to properly identify the different arrival

times tUS RX and tRF RX . The speed of ultrasound also has

to be quantified exactly, particularly it is strongly influenced

by environmental effects. Therefore you can set up a well-

known and fixed reference distance within your system and

derive the speed of ultrasound from it, like in the Cricket

Compass system [2]. If no calibrated distance exists and

especially if the localization system works within common

air, you can measure temperature and relative humidity just

as well. Indeed, according to Bohn [16], the change in speed

of ultrasound by relative humidity is just little in contrast to

that by temperature. Sensing the latter property with adequate

hardware is mandatory.

C. Ramping

As described for example in Mágori [17], another physi-

cal phenomena comes across with ultrasonic transceivers in

general. Even if for instance the capture/compare block of

a microcontroller’s timer generates a clean ultrasound square

wave to stimulate an US transmitter (as suggested in III-A), the

transmitter itself does not transform this signal lossless into an

acoustic wave, but needs a short settling time called ramping.

This problem gets even worse at the receiver which amplifies

the incoming wave much more sluggish. Fig. 3 shows a chirp

detected by a capture/compare unit at a signal frequency fUS

and the slow but clearly observable rising of its amplitude.

This effect is subject to attenuation, i.e. it also depends on the

traveled distance, and sporadically results in mistimed chirp

detection. Hence the recorded point in time of US reception

could be shifted in worst case by one period 1
fUS

in either

direction - even within an immovable system. Yet this would

produce a distance error of about ±8.6 mm at an ultrasonic

frequency fUS = 40 kHz. Ramping is also the reason, why it
is necessary to generate the chirp for longer than the length of

one ultrasonic period. Raju [18] for instance uses a 12-cycle

burst for one chirp, and so does SNOW BAT.

Fig. 3 also displays the time lag ∆tdelay between real signal

reception by the capture/compare unit used and the recognition

Fig. 3. Ramping at a receiver of 40 kHz ultrasonic chirps

of its interrupt at the time, when capture/compare gets inactive

again. This delay is nearly constant but must be taken into

account for the algorithm later on. Also noteworthy is the

threshold voltage Vthreshold for the capture/compare unit and

the reference voltage Vreference, around which the US receiver

voltage oscillates. To avoid false detection of noise as a chirp,

both voltages Vthreshold and Vreference must not be too close

to each other. For instance the MSP430 microcontroller [15],

[19] is deployed at SNOW5 sensor nodes [7] and allows a

much finer adjustment of the reference voltage compared to

the threshold. This manner is common practice with most other

microcontrollers.

D. Multichirping

To increase accuracy, a mobile node can chirp more often

for each measurement. That means, after the first chirp the

mobile node sends a fixed number of further ultrasonic chirps

at specific intervals, which are also defined within the CAV.

The receiving anchors thus have to determine at least one

such chirp and average over all received signals of that

measurement. This result will be replied to the mobile one

as the estimated distance. Thereby the average measurement

error will be kept small, but the whole process will take

longer and the mobile node only receives the average over

all measurements. After this detailed analysis of TDoA based

distance measurement and some involved physically given

hardware effects, an algorithm for position estimation will be

developed.

IV. FROM DISTANCES TO POSITIONS

Several algorithms are available to derive positions from

measured data. A couple of them solve a system of linear equa-

tions using matrices (and their transposes) like Reichenbach et

al. [20] or Savvides et al. [5]. Some consist of trigonometric

functions for adjustment of a coordinate system like Peng et

al. [21] or for triangulation like Čapkun et al. [22]. By using

such complex mathematical structures, you should keep in

mind, that computational power as well as memory size of

most microcontrollers used within WSNs nowadays is very

restricted.

Thus, this section develops an algorithm which will handle

the distance information gained in section III mostly without

difficult mathematical expressions. Therefore, the system will

be simplified first (IV-A). Some hints for low-level software

design, e.g. approximation algorithm (IV-B), adequate data

type selection (IV-C) and computational boosts (IV-D), (IV-E)

will be given, too. To evaluate some of these hints, a short

comparison between self-developed approximations and an

already available algorithmic library is drawn (IV-F), before a

proposal for position estimation (IV-G) closes this section.

A. System’s simplification

By the past section, an anchor can determine its distance

towards a mobile node and has to sent this distance informa-

tion back to the chirping one. But for an accurate positioning

some more distance information from different anchors is

necessary. The minimal number of distances required depends

on the measurement method used as well as the dimension

of the room to be observed and the desired accuracy. For

example trilateration needs at least three distances to non-

collinear anchors for two-dimensional positions and at least

four distances to non-coplanar anchors for three-dimensional.

To simplify matters, all anchors si of the localization system

are situated within a single ceiling plane C, which is parallel

to the floor plane F , on which a mobile node m will move.

The minimal distance between both planes is ceiling height

h. With it, a static node si can not only determine the

distance di between itself and the chirping one but it can

also precalculate radius ri of the projected circle on F (cf.

Fig. 4), because specifying radii reduces the complex problem

from intersecting (hemi)spheres to intersecting circles. On this

circle the mobile node would only reside on under perfect

conditions. According to the Pythagorean theorem, radius ri

results from the measured distance di and the known height

h as follows:

ri =
√

d2
i − h2 (4)

B. Square root approximation

Adopting (4) as it stands would work just inefficiently,

if the deployed microcontroller lacks mathematical hardware

units to extract square roots. Linking an overcrowded math

library like the C math lib, which emulates these difficult

calculations by software, is sometimes not proper by reason

of low memory (cf. section IV-F). However, for square root

calculation some approximations exist, for instance Newton’s

method, an iterative alternative to approximately compute
√

a

for any a > 0 with an arbitrary initial value S 6= 0:

a0 =
S

2
,

an+1 =
1

2
·
(

an +
S

an

)

(5)

=
1

2
·
(

a2
n + S

an

)

(6)

This approximation converges with subject to S quite fast

after just a few iterations. If the deployed microcontroller

Fig. 4. Position estimation using distances d1, d2, d3

misses hardware floating-point devices – and a lot of them yet

do so – integer mathematics has to be used anyway. For this

reason, a difference less than or equal to 1 between new and

old calculated result an+1 − an ≤ 1 serves as stop criterion.

By using integers exclusively, some arithmetic operations will

originate rounding errors, and the easiest way to reduce those

is their prevention. To minimize rounding errors, one can

switch to smaller units, i.e. multiply the corresponding values

by a suitable constant as also suggested in Raju [18]. For

example, instead of specifying every radius ri in millimeter

(mm), you can use hundredth millimeter or even micrometer

(µm) to soften rounding errors and to stay accurate to a

millimeter at last. In doing so, you only have to keep these

variables within their ranges and watch out for arithmetic

overflows.

In this account a software engineer has to trade off between

(5) and (6). On the one hand, the first one could produce

graver rounding errors compared to the second one, because of

its earlier division S
an
. On the other hand, the latter equation

(6) may cause more overflows due to its square of an and

subsequent addition. To gain less overflows and due to some

microcontroller lack floating point numbers, (5) should be used

slightly modified as

a0 =

⌊

S

2

⌋

,

an+1 =

⌊

1

2
·
(

an +

⌊

S

an

⌋)⌋

. (7)

C. Data type selection

To save memory, these above-named (unit) expansions

should be implemented moderate and well considered. For

instance the ∆tchirp of a CAV (see section III-A) best symbol-

izes a period of time but not an absolute point in time. Using

microseconds as smallest time unit, the data type int for this

period just needs 2 bytes of memory but allows to describe

up to sufficient 65.5 ms. Whereas a point in time has to be at

least of data type long or better of type long long, which
would allow a validity period of more than 580.000 years,

but requires 8 bytes of memory. Besides, for worse equipped
microcontrollers big data types are broken down by compilers

into types, natively supported by the hardware. As an 8-bit

microcontroller can handle data types up to char directly,

one int will be turned into two composed char.

D. Binary shifts

Equation (7) exemplifies another improvement as well,

because in general binary right-shifts are executed faster than

divisions, since a binary right-shift by one of an integer value

is equivalent to a division by two, rounded off to the last

integer. Usually, a multiplication by two is not significantly

faster, e.g. the MSP430 emulates such a rotating arithmetic

left-shift by an addition instruction (see the MSP430 family

user’s guide [15]). Besides, this microcontroller even offers

a hardware multiplier, which works as peripheral device in

parallel to its CPU and does not interfere with it.

For space optimization it is also advisable to pass most

parameters of a subroutine as pointers, especially if the data

types of the parameters allocate lots of memory like a long
long does. For example a pointer at the MSP430 requires

only 2 bytes whereas a long long requires 8 bytes of

space. Thus, a space optimized implementation of a square

root function written in C and using binary shifts as well as

parameter passing by pointers can be found in listing 1.

unsigned long long sqroot(unsigned long long* a) {
unsigned long long last = *a; // save passed parameter

unsigned long long y = last >> 1; // y =
⌊

last

2

⌋

while (last - y >= 1) { // stop criterion

last = y; // save old value

y = (y + (*a) / y) >> 1; // equation 7
}
return y;

}

Listing 1. Implemented square root function using simple initial value

E. Initial value selection

But this self-defined function sqroot requires much more

time to extract the square root of an integer than the function

sqrtf of the C math library (cf. table I). One main reason

will be the badly chosen initial value y, which is the half

of the given parameter a (cf. listing 1). Thus, each iteration

gains just one single bit of information in worst case, e.g. a

number of type long needs about 32 iterations. To speed up

another and more adequate initial value has to be calculated,

however its computation must not be too complex. Also using

only integer values exclusively, this may be obtained by the

initial value

a0 =

⌊

a

2⌊log2
(a)/2⌋

⌋

. (8)

For its computation, the logarithmic function in base two is

needed. But the design of the binary numbers allows a fast

and adequate approximation for that logarithm. E.g., listing

2 presents a space efficient implementation and recycles the

primary square root function from listing 1 at the same time.

// Searches for most significant "1" in a and

// thus returns i =
⌊

|a|
2

⌋

= ⌊log
2

a⌋

unsigned int log2pa(unsigned long long* a) {
// c points at a
unsigned char *c = (unsigned char*)a;
int i = 8; // number of char in long long
while (i--) {

if (c[i] != 0) { // wanted "1" is within i’s char
c = (unsigned char*)((unsigned int)c[i]);
i *= 8; // search within i’s char
// search exact i
while ((unsigned char)c >>= 1) i++;
return i;

}
}
return 0;

}

unsigned long long sqrootLog(unsigned long long* a) {
unsigned long long last = (*a) >> (log2pa(a)>>1);
long long y = last >> 1;
while (last - y >= 1) {
last = y;
y = (y + (*a) / y) >> 1;

}

Listing 2. Implemented functions for logarithm and square root calculation

F. Optimum achieved?

This last approximation sqrootLog seems to be small

and fast, so we compared it to its earlier version sqroot and

the square root function sqrtf of the C math library. We

compiled each implementation with equal compiler settings,

whereon listing 3 required 3424 B, listing 4 required just

430 B, and at last listing 5 required 518 B of memory. Because

the sqrtf function is defined for double values only, no

space optimization using pointers as parameters is possible and

the result must be casted from double into long long, too.
Furthermore, the software emulated floating point arithmetic

is automatically included when using the C math library,

therefore lots of space will be allocated. And of course, the

additional logarithm function requires a bit more space than

the other version of the self-defined square root function, using

the simple initial value.

#include <math.h>
int main(void){
long long x = 0x1234567890ABCDEF;
x = (long long)sqrtf(x); }

Listing 3. Square root function of math.h

int main(void){
unsigned long long x = 0x1234567890ABCDEF;
x = sqroot(&x); }

Listing 4. Square root function using simple initial value

int main(void){
unsigned long long x = 0x1234567890ABCDEF;
x = sqrootLog(&x); }

Listing 5. Square root function using complex initial value

For time requirements, we measured the average time need

for 100 consecutive calculations of several exemplary positive

numbers of type long long (cf. table I). It seems as if the

calculating speed of the library defined square root function is

higher than the self-defined one with the simple initial value,

except for the number zero. The other self-defined square root

function uses a logarithmic initial value and thus requires a

bit more time for computation on smaller numbers. But on

huge numbers, the last implementation is 2.5 times faster than

the function of the C math library and even about 23 times

faster than the first attempt of the self-defined square root

function. Thus, you really have to find an application and

device dependent trade-off between the requirements of space

and time once more.

G. Position estimation

Granted that enough anchors answered their positions to-

gether with the measured distances and radii respectively

towards the chirping node, the next challenge to bear for

the mobile one is the interpretation of these facts. From

radii and positions of the replying anchors, circles can be

derived, indicating the potential positions of the mobile one.

The intersection point of all these circles denotes the position

where the mobile node resided during chirping. That, at least,

is the theory. But via inexact hardware, ramping, rounding

errors and other real world conditions, never all circles will

TABLE I
TIME REQUIREMENTS OF THE SQUARE ROOT FUNCTIONS IN µs

hex number sqrtf sqroot sqrootLog
0x0000000000000000 297 12 26
0x0000000000000004 379 366 736
0x0000000000000009 380 720 738
0x0000000000000010 376 1073 1093
0x0000000000020000 488 3885 1098
0x000000000004C900 362 3844 1456
0x00000000F0000010 566 6173 1106
0x0000FFFFFFFFF00C 901 8372 364
0x0000FFFFFFFFFFF9 903 8699 365

intersect in one single point. For instance Tseng et al. [10]

suggest the maximum likelihood estimation as a possibility for

position estimation under uncertain data, but the least squares

technique or the usage of a Kalman filter is also feasible.

The SNOW BAT system for instance uses another simple

heuristic (cf. Fig. 5). Here, the circles are intersected with each

other, around each intersection point is set a small tolerance

zone. The more other intersection points are within such a

tolerance zone, the more trustworthy are the points inside

of it. If all circles of one measurement are intersected, the

intersection points within the most trustworthy zone define

a polygon, whose center of gravity determines the estimated

position of the mobile node. With it, the localization pro-

cess also withstands one faulty anchor among many others,

however the more circles to intersect, the more precise the

estimated position. But even if a single anchor node should fail

totally because of material defect, computer bug, hard failure

or just low battery, the remaining localization system still

works properly, provided enough faultless anchors are within

range.

V. CONCLUSION AND FUTURE WORK

This paper described some difficulties which could arise

while the development of a just theoretically stated idea of a

WSN for localization. It first mentioned some characteristics of

such systems and specified TDoA in detail. Next it gave some

hints and possible solutions, both for distance measurement

and position estimation. Some hardware and software specific

aspects were explained, for example the restricted data type

usage of some microcontrollers, the dealing with ramping

or the usage of integer numbers to minimize measurement

errors and additionally save memory. It was also demonstrated

that you have to find a trade-off between space and time

requirements.

Most of the mentioned optimizations have already been

implemented and tested on SNOW5 sensor nodes [23], [7]

within the so-called SNOW BAT system [6]. For this reason,

it achieves an accuracy up to ±1 mm for single distances

and up to ±4 mm for three-dimensional positions. But first

experiments showed that the applied communication protocol

is somewhat the bottleneck of such a wireless localization

system, since a huge amount of coexistent chirping mobile

nodes still should be able to localize at frequent intervals.

Therefore further experiments have to be made, especially

Fig. 5. Position estimation using three anchors

different communication protocols have to be tried out within

this real world system. We also want to analyze the effect of

an additional field programmable gate array (FPGA) to avoid

some computational limits and easily extend the restrictive

computation of the currently used sensor node SNOW5. This

would also open up new fields of activity like cryptograph-

ically secured sensor networks or video processing within a

WSN based surveillance system.

REFERENCES

[1] A. Ward, A. Jones, and A. Hopper, “A New Location Technique for the
Active Office,” IEEE Personal Comm., vol. 4, no. 5, pp. 42–47, Oct.
1997.

[2] N. B. Priyantha, A. K. Miu, H. Balakrishnan, and S. Teller, “The
Cricket Compass for Context-Aware Mobile Applications,” in MobiCom
’01: Proceedings of the 7th annual international conference on Mobile
computing and networking. New York, NY, USA: ACM Press, Jul.
2001, pp. 1–14.

[3] N. B. Priyantha, “The Cricket Indoor Location System,” PhD Thesis,
Massachusetts Institute of Technology, Jun. 2005.

[4] Y. Fukuju, M. Minami, K. Hirasawa, S. Yokoyama, M. Mizumachi,
H. Morikawa, and T. Aoyama, “DOLPHIN: A practical approach for
implementing a fully distributed indoor ultrasonic positioning system,”
in UbiComp 2004: Ubiquitous Computing (LNCS 3205). Springer,
2004, pp. 347–365.

[5] A. Savvides, C.-C. Han, and M. B. Strivastava, “Dynamic fine-grained
localization in ad-hoc networks of sensors,” in MobiCom ’01: Proceed-
ings of the 7th annual international conference on Mobile computing
and networking. New York, NY, USA: ACM Press, 2001, pp. 166–
179.

[6] R. Kolla, M. Baunach, and C. Mühlberger, “SNoW Bat: A high
precise WSN based location system,” Institut für Informatik, Universität
Würzburg, Tech. Rep. 424, May 2007.

[7] ——, “Snow5: a modular platform for sophisticated real-time wireless
sensor networking,” Institut für Informatik, Universität Würzburg, Tech.
Rep. 399, Jan. 2007.

[8] N. Bulusu, “Localization,” in Wireless Sensor Networks - A Systems
Perspective, N. Bulusu and S. Jha, Eds. Artech House, 2005, ch. 4,
pp. 45–57.

[9] J. Beutel, “Location management in wireless sensor networks,” in
Handbook of Sensor Networks: Compact Wireless and Wired Sensing
Systems, M. Ilyas and I. Mahgoub, Eds. CRC Press, 2005, ch. 20, pp.
1–23.

[10] Y.-C. Tseng, C.-F. Huang, and S.-P. Kuo, “Positioning and location
tracking in wireless sensor networks,” in Handbook of Sensor Networks:
Compact Wireless and Wired Sensing Systems, M. Ilyas and I. Mahgoub,
Eds. CRC Press, 2005, ch. 21, pp. 1–13.

[11] J. Hightower, R. Want, and G. Borriello, “SpotON: An indoor 3d
location sensing technology based on RF signal strength,” University of
Washington, Department of Computer Science and Engineering, Seattle,
WA, UW CSE 00-02-02, February 2000.

[12] P. Bahl and V. N. Padmanabhan, “RADAR: An in-building RF-based
user location and tracking system,” in INFOCOM (2), 2000, pp. 775–
784.

[13] N. B. Priyantha, A. Chakraborty, and H. Balakrishnan, “The Cricket
Location-Support system,” in Proceedings of the 6th Annual ACM Inter-
national Conference on Mobile Computing and Networking (MobiCom
’00), Aug. 2000.

[14] J. Haartsen, “Bluetooth - the universal radio interface for ad hoc, wireless
connectivity,” Ericsson Review, no. 3, pp. 110–117, 1998.

[15] MSP430x1xx Family User’s Guide, Texas Instruments Inc., Dallas
(USA), 2006.

[16] D. A. Bohn, “Environmental effects on the speed of sound,” Journal of
Audio Engineering Society, vol. 36, no. 4, pp. 223–231, Apr. 1988.

[17] V. Mágori, “Ultraschallsensoren zur Abstandsmessung und
Präsenzdetektion,” in Sensortechnik, H.-R. Tränkler and E. Obermeier,
Eds. Springer, 1998, ch. 10.2, pp. 511–553.

[18] M. Raju, “Ultrasonic distance measurement with the MSP430,” Texas
Instruments, Tech. Rep., Oct. 2001.

[19] MSP430x161x Mixed Signal Microcontroller (Rev. D), Texas Instruments
Inc., Dallas (USA), 2005.

[20] F. Reichenbach, A. Born, D. Timmermann, and R. Bill, “A distributed
linear least squares method for precise localization with low complexity

in wireless sensor networks,” in Proc. 2nd IEEE International Confer-
ence on Distributed Computing in Sensor Systems (DCOSS 2006), 2006,
pp. 514–528.

[21] R. Peng and M. L. Sichitiu, “Angle of Arrival Localization for Wireless
Sensor Networks,” in Proc. of the Third Annual IEEE Communications
Society Conference on Sensor and Ad Hoc Communications and Net-
works. IEEE Computer Society, Sep. 2006, pp. 374–382.

[22] S. Čapkun, M. Hamdi, and J.-P. Hubaux, “GPS-free positioning in
mobile ad-hoc networks,” in HICSS ’01: Proceedings of the 34th
Annual Hawaii International Conference on System Sciences (HICSS-
34)-Volume 9. IEEE Computer Society, 2001, p. 9008.

[23] R. Kolla, M. Baunach, and C. Mühlberger, “Snow5: A versatile ultra
low power modular node for wireless ad hoc sensor networking,” in
5. GI/ITG KuVS Fachgespräch ”Drahtlose Sensornetze”, P. J. Marrón,
Ed. Stuttgart: Institut für Parallele und Verteilte Systeme, Jul. 2006,
pp. 55–59.

[24] M. Ilyas and I. Mahgoub, Eds., Handbook of Sensor Networks: Compact
Wireless and Wired Sensing Systems. CRC Press, 2005.

