Collaborative Memory Management for Reactive
Sensor/Actor Systems

Marcel Baunach
University of Wuerzburg, Germany

Copyright (©) 2010 IEEE. Reprinted from 5th IEEE International Workshop on Prac-
tical Issues in Building Sensor Network Applications (SenseApp).

This material is posted here with permission of the IEEE. Internal or personal use
of this material is permitted. However, permission to reprint/republish this ma-
terial for advertising or promotional purposes or for creating new collective works
for resale or redistribution must be obtained from the IEEE by writing to pubs-
permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

5th |EEE International Workshop on Practical Issues in Building Sensor Network Applications

SenseApp 2010, Denver, Colorado

Collaborative Memory Management for Reactive
Sensor/Actor Systems

Marcel Baunach
Department of Computer Engineering, University of Wiirzburg, Am Hubland, 97074 Wiirzburg, Germany
Email: baunach@informatik.uni-wuerzburg.de

Abstract—Increasing complexity of today’s WSAN applications
imposes demanding challenges on the underlying system design.
This especially affects real-time operation, resource sharing and
memory usage. Using preemptive task systems is one way to
retain acceptable reactivity within highly dynamic environments.
Yet, since memory is commonly rare and can often not be
assigned statically, this rapidly leads to severe memory manage-
ment problems among tasks with interfering and even varying
requirements. Finding an allocator which suitably adapts to
changing conditions while covering both issues is generally
hard. We present the novel CoMem approach for maintaining
high reactivity and efficient memory usage within such systems.
With respect to task priorities and the typically limited perfor-
mance and resources of sensor nodes, our technique facilitates
compositional software design by providing tasks with runtime
information for yet collaborative and reflective memory sharing.
Thereby, we require no special hardware-support like MMUs but
operate entirely software-based. An evaluation will show that our
approach can still allow allocation delays to be close to the best
case and inversely proportional to the requester’s priority.

Index Terms—dynamic memory, preemptive/prioritized tasks,
reflection, embedded systems, real-time

I. INTRODUCTION

The ever increasing size, pervasiveness and demands on
today’s wireless sensor/actor networks (WSAN) significantly
boost the complexity of the underlying nodes. Thus, modular
hardware and software concepts (e.g. service oriented pro-
gramming abstractions [1] and fine grained code updates [2])
are more and more used to manage design and operation of
these embedded systems. Then, adequate interaction between
these modules is essential to handle typical compositional
problems like task scheduling, resource sharing or even real-
time operation [3]. Concerning this, we find that current
WSAN research is still too limited to static design con-
cepts. As already stated in [4], next generation embedded
systems will be more frequently used as reactive real-time
platforms in highly dynamic environments. Here, the true
system load varies considerably and can hardly be predicted
a priori during development. Then, preemptive and prioritized
tasks are required for fast response on various (sporadic and
periodic) events but further complicate memory management
and reactivity. This is especially true for open systems where
real-time and non-real-time tasks coexist in order to reduce
hardware overhead, energy issues and deployment effort.

In this paper we present the novel CoMem approach for
collaborative memory sharing and real-time operation within
preemptive operating systems. It improves compositional soft-

978-1-4244-8388-4/10/$26.00 ©2010 |EEE

ware design by providing independently implemented tasks
with information about their current influence on each other. In
our opinion, the central weakness of all memory management
approaches we found so far is, that tasks are not aware of
their (varying) influence on the remaining system and thus,
cannot collaborate adequately. In this respect, CoMem follows
classic reflection concepts [5], [6] and introduces a new policy
into operating system kernels, by which programs can become
‘self-aware’ and may change their behavior according to their
own current requirements and the system’s demands. As often
suggested [5], we take advantage of the resource and memory
manager’s enormous runtime knowledge about each task’s
current requirements. This information is carefully selected
and forwarded to exactly those tasks, which currently block the
execution of more relevant tasks. In turn, these so called hints
allow blocking tasks to adapt to the current memory demands
and finally to contribute to the system’s overall progress,
reactivity and stability. In this collaborative manner, CoMem
also accounts for task priorities as defined by the developer.
The decision between following or ignoring a hint is made by
each task autonomously and dynamically at runtime, e.g. by
use of appropriate time-utility-functions [7]. Finally, CoMem
is not limited to embedded systems and the WSAN domain,
but can be applied to real-time operation in general.

We’ll initially review some related techniques from existing
work before details about our new approach will form the
central part of this paper. Our reference implementation of
CoMem will show that — despite of the problem’s complexity
— it is efficiently usable even for low performance devices like
sensor nodes. Therefore, we will also present some application
examples and the impact on the programming model before
performance results from real-world test beds close this paper.

II. RELATED WORK

Dynamic memory management is subject to intense research
efforts and plays an important role in current software design
[8]1, [9], [10], [11]. Yet, most concepts limit their focus on
developing an allocator, which assigns the available heap space
in a way to reject as few requests as possible in spite of high
dynamics due to frequent (de)allocations. Unfortunately, heap
methods suffer from a few inherent flaws, stemming entirely
from fragmentation. For multitasking systems in particular,
there is a lack of scalability due to competition for shared
heap space. Thus, a good allocator should support and balance
a number of features [12]:

969

F1 Minimize space by not wasting it, i.e. allocate as little
memory as possible while keeping fragmentation low.

F2 Minimize time and overhead by executing related functions
as fast as possible or even in deterministic time.

F3 Maximize error detection or even avoid tasks to corrupt
data by illegal access to unassigned memory sections.

F4 Maximize tunability to account for dynamic and task
specific requirements like real-time operation.

F5 Maximize portability and compatibility by just relying on
few but widely supported hardware and software features.

F6 Minimize anomalies to support good average case perfor-
mance when using default settings.

F7 Maximize locality by neighboring related memory blocks.

However, according to [13], any allocator can face situations
where continuous free memory is short while the total amount
of free space would be sufficient to serve an allocation request.
Especially for systems without MMU or virtual address space,
a centralized heap reorganization by the memory manager is
hard or even impossible then, since it lacks information about
the actual memory usage by the current owner tasks.

Thus, the use of dynamic memory is largely avoided for
time or safety critical systems [10]. For these, F1 and F2
must be extended to support guaranteed allocation and the
knowledge about the allocators WCRT. At least, real-time
operating systems use so called pools of fixed-size memory
blocks (low external, high internal fragmentation) and constant
allocator execution time. In contrast, blocks of arbitrary size
commonly provide more flexibility (less internal, more exter-
nal fragmentation) at higher costs and might theoretically par-
tition the usually small heap space more efficiently. Depending
on the internal heap organization, four central techniques are
commonly distinguished: Sequential fits, segregated free lists,
buddy systems and bitmap fits. Since we focus on memory
reorganization in case of allocation failures, we won’t go into
detail about these techniques but refer to [10], [13] instead.

When considering WSAN operating systems, only few
support dynamic memory for arbitrary use by application
tasks: TinyOS 2.x [14] supports a semi-dynamic pool approach
in which a fixed number of blocks can be statically assigned
to a task. Tasks can release their blocks to the pool and
reallocate blocks as long as the initial number is not exceeded.
Contiki [2] offers dynamic memory for storing variables of
dynamically loaded modules. In SOS [15] a block based first-
fit scheme with 32 x 16, 16 x 32, 4 x 128 byte is used to store
module variables and messages. MantisOS [16] uses best-
fit to allocate arbitrary size blocks for thread stacks and the
networking subsystem only. In [8] a combination of sequential
fits, segregated free lists and the buddy system is proposed for
Nano-Qplus. SensorOS [17] supports a pool based approach
for messages and a buddy system for blocks of any size.
To find a suitable allocator for concrete WSAN applications,
SDMA [11] uses simulation for comparing several candidates
by various metrics.

In general, static allocator selections will hardly be optimal
and cannot be easily adapted in case of dynamic changes to
the application code [2]. Beside SensorOS, no OS provides

the arbitrary use of dynamic memory for tasks. In particular,
none provides any mean for dynamic memory reorganization
in case of time-critical sporadic requests or priority inversions
when low priority tasks block higher priority tasks by any
memory allocation. To the best of our knowledge, no OS
exists to support on-demand memory reorganization in small
embedded systems without brute force methods like (energy
intensive) swapping, memory revocation or task termination
with potentially critical side effects.

III. THE COMEM APPROACH

Reflection based task cooperation is a powerful strategy to
share resources on-demand and “upwards” along with the task
priorities. We adapt the strengths and benefits for the special
case of dynamic memory allocation. This section explains the
central idea, design and implementation decisions behind our
new CoMem concept by addressing the specific problems.

A. Dynamic Hints for On-Demand Resource Sharing

Our CoMem approach is generally based on Dynamic
Hinting [18], a technique for collaborative sharing of arbi-
trary resources among prioritized and preemptive tasks. As
central idea, dynamic hinting analyzes emerging task-resource
conflicts at runtime and provides blocking tasks with infor-
mation about how they can help to improve the reactivity
and progress of more relevant tasks. The combination with
blocking based priority inheritance techniques — e.g. the basic
Priority Inheritance Protocol (PIP) [19] — reliably improves
and stabilizes the overall system performance. Therefore,
the approach reduces priority inversions, resource allocation
delays and even recovers from deadlocks where required.

According to PIP, a task ¢’s active priority p(t) is raised to
p(v) iff ¢ blocks at least one other task v with truly higher
active priority p(v) > p(t) by means of at least one so called
critical resource. Only then, dynamic hinting immediately
passes a hint indicating this priority inversion to ¢ and ‘asks’
for releasing at least one critical resource quickly. While this
facilitates the on-demand release and handover of blocked
resources, passing such hints is not trivial in preemptive
systems, since from the blocker’s view, this happens quasi-
asynchronously and regardless of its current situation, task
state or code position. Given that a task itself can be in ready
or even waiting state while a new blocking comes up, two
techniques are relevant for our CoMem approach:

o Early Wakeup: When in waiting state (i.e. suspended by a
blocking function), ¢ will immediately be scheduled again
and transit to running state. The resumed function will
return an indicator value to signal this special situation.
The impact on the programming model is similar to
exception handling in various programming languages:
A task ‘tries’ to e.g. sleep but ‘catches’ an early wakeup
to react on its blocking influence (—Fig. 1a).

o Hint Handler: When ready (i.e. preempted by another
task) a task-specific hint handler is injected into ¢’s exe-
cution. These handlers operate entirely transparent to the
regular task. Similar to the CPU scheduler in preemptive

970

a) PIP only b) PIP only

A priority blocked A priority blocked
2% ty

.Jmﬂl_{/;q& handover | ready E—H}haﬂdover
tr resume i h tr, * H - h

JL » i »

o
PIP + Early Wakeup Pl
A priority ¢ reduced blocking A priority reduced blocking

gy [— ol ————— by f—

] HINTjJ::1X handover] HINT—ND:]&ha”dOVEf
lr T /- e— tr T Lo y—

PIP + Hint Handler

1 Z s > 1 pad a >
task handles hint fine handler handles hint e
Tasks: mmm running state (normal operation) - ready state
——running state (hint handling) — waiting state

Resources: {request »timeout [allocation] deallocation

Figure 1. Hint handling when task t;, blocks in a) waiting or b) ready state

kernels, hint handlers allow to operate literally non-pre-
emptive resources in a quasi-preemptive way (—Fig. 1b).

In both cases, hints are passed instantly and only when
blocking really occurs. Since dynamic hinting is a reflective
approach, hint handling always follows the same procedure:
Query the critical resource and decide between following or
ignoring the hint. When following:

1. Save the resource state and stop its operation.

2. Release the resource. This will immediately cause an im-
plicit task preemption due to the resource handover to the
higher priority task which could not be served until now.

3. Re-allocate the resource upon resumption (asap).

4. Restore the resource state and restart its operation.

B. CoMem for Dynamic Memory Allocation

Since memory is commonly a very scarce resource in small
embedded systems, it needs to be shared among tasks to
achieve a higher integration density for future, versatile nodes
and WSAN applications. This is already true, if some tasks
run rather seldom and a static memory allocation would leave
valuable space unused for long periods. Nevertheless, rarely
running tasks might also be subject to tight timing constraints
and request memory only upon certain events (e.g. triggered
by environmental interactions, see Section V).

So, the first problem is indirect priority inversion concerning
such an request. Commonly, this term is used upon block-
ing on ordinary resources. However, the heap memory will
become partitioned (and fragmented) during system runtime
and the number of (potentially disturbing) blocks is highly
variable. In such cases an ordinary resource for managing
mutually exclusive access is insufficient. Instead, so called
virtual resources are used to internally split the complete (and
otherwise monolithic) memory for use by several tasks. As an
example Figure 2a shows such a scenario: Tasks t4,tp,tp
hold memory blocks protected by the virtual resource 7.
Thus, to’s request is rejected and we see a priority inversion.

Simply using e.g. PIP for raising p(t4),p(tp) and poten-
tially accelerating their deallocation imposes some questions:
Which one should be adapted? Raising just one blocking task
might select the wrong one. Raising all blocking tasks means

a) Blocked Request for Dynamic Memory:
ta,tp impose priority inversion on t¢

b) Indirect Priority Inversion due to
High Priority Memory Manager M
Resource Graph: Heap priority

P, ﬁ/l @ufes?urce Pt -3 ’
N s ~~~@l Pt

/ \ riority
th ased
¢ «~_preemption
L

malloc(...) time

priority inversion

Heap Situation: [(blocked

| free ‘tA‘ free ‘ tp ‘free‘tB‘freel

Figure 2. Critical Scenarios during Dynamic Memory Management

setting them to equal priorities p(t4) = p(tg) = P, and
leads to round-robin or run-to-completion scheduling despite
of intentionally different base priorities Py, < Py, < P;.

In fact, tc could be served if either lower prioritized task
t4 or tp would release or just relocate its memory block.
Yet, in common approaches, tasks do not know about their
blocking influences and thus cannot react adequately. In turn,
developers tend to retry until the allocation succeeds.

Using e.g. plain C-functionality within preemptive systems
would result in spinning loops calling malloc () and cause
the unintentional (and maybe infinite) blocking of lower
prioritized tasks. If the underlying operating system supports
timing control for tasks, spinning might be relaxed by periodic
polling for free memory. This would still cause significant
CPU load upon short periods and potentially miss sufficiently
large free memory areas upon long periods. Anyway, the
memory manager does not know that ¢ actually still waits for
memory between the polls and can neither serve ¢ nor reserve
memory. If supported, another load intensive option are lock-
free methods like [9]. To minimize the load by currently not
serveable tasks, our approach uses a task-blocking malloc ()
function and transfers the memory organization to the memory
manager subsystem M. In turn, we have to

a) find a suitable strategy for internal heap (re)organization,

b) limit the blocking to a certain timeout (as often requested
and useful within reactive systems),

c) decide whether this subsystem itself is a task (server), a
kernel function (syscall) or if it entirely operates within
the context of each requesting task.

Let’s start with c. If the memory manager M has higher pri-
ority than ordinary application tasks, indirect priority inversion
would still emerge from handling each request immediately
and independently from the requester’s priority. As Figure 2b
shows, this would allow a low priority task ¢; to implicitly
slow down a high priority task ¢ty (p(t1) < p(tg)) by simply
calling malloc (). To avoid this problem, it is at least wise
to design the memory manager as server task ¢,; and adapt its
base priority F;,, dynamically to the maximum active priority
of all tasks it currently has to serve. Yet, to further reduce
overhead in terms of task count, context switches, stack space,
etc., we decided to execute the memory management functions
entirely within the context of the calling tasks. In addition,
this will implicitly treat the corresponding operations with
adequate priority in relation to other tasks (—features F2, F4).

To allow temporally limited blocking, we extended our
malloc () function by a timeout parameter 7 (—Fig. 3).

971

This way, we provide the memory management subsystem
with information about how long we are willing to wait in
worst case and simultaneously supply a defined amount of time
for reorganization of the heap space. 7 will also be passed to
the blocking tasks which in turn can use it within their time-
utility-functions [7] (— Section V-B, feature F4).

Finally, the heap (re)organization policy is a critical core
element within all memory managers and was already consid-
ered in many ways, e.g. [10], [13]. Beside task termination,
two elementary options exist and are supported by CoMem:

« release memory blocks (e.g. dismiss or swap the data)

« relocate memory blocks (e.g. for compaction)

We still need to discuss which blocks to select and how
to treat them adequately with respect to their current owner
task. Within our concept, only these blocks are considered
for reorganization which belong to lower prioritized tasks and
would lead to sufficient continuous space to serve higher pri-
oritized requesters. Furthermore, relocation takes precedence
over release while the latter is always more powerful.

It is important to notice, that revoking or moving memory
without signaling this to the owner task is complicated or
even impossible in most cases. Not even data structures which
are just accessed relative to the block base addresses (like
stacks) can simply be relocated: expired addresses might still
reside in registers or CPU stages, then. Much worse, affected
peripherals like e.g. DMA controllers cannot be updated
automatically and would still transfer data from/to old blocks.
In such situations not even task termination and restart is a
valid solution. Instead, this can only be handled by the owner
task which has complete knowledge about the memory usage
and all dependencies.

Thus, the central idea of CoMem is to inform those tasks
which cause the denial of memory for higher prioritized tasks.
Along with the hint, we advise them whether releasing or
relocating their memory blocks would solve this problem most
suitably and thus account for the reactivity and progress of
more relevant tasks. In fact, this triggers a self-controlled
but on-demand heap reorganization by means of some helper
functions like e.g. relocate () and free () from Fig. 3.

Before heading to the technical details and the impact on
the programming model, we’ll outline our design decisions:
1. Persisting memory allocations must not prevent further re-

quests. Then, CoMem always knows about all system wide

requirements and can produce adequate hints/suggestions.

2. Extending malloc () by a timeout 7 for limited waiting
gives blocking tasks the time to react on a hint.

3. Executing the memory management functions directly
within the callers’ task contexts reduces overhead and
implicitly reflects the task priorities.

Please note, that as long as no MMU is available, our
concept cannot protect memory against unauthorized access
but only coordinate its exclusive sharing (—feature F3).

IV. COMEM IMPLEMENTATION AND USAGE

This section presents the implementation details about our
novel memory management approach. The basic idea behind

CoMem might be applied as integral concept for many (em-
bedded) real-time operating systems if these support truly
preemptive and prioritized tasks plus a timing concept that
allows temporally limited resource requests. For our reference
implementation we extended SmartOS [20] since it fulfills
these requirements. Beyond, it offers quite common charac-
teristics, and thus is a good representative for the adaptation
of similar systems. In addition, it is available for several MCU
architectures like MSP430, AVR, SuperH (—feature F5).

A. SmartOS Overview

The SmartOS kernel maintains a local system time and
allows temporally limited waiting for events and resources
with a certain (relative) timeout or (absolute) deadline. This
way, tasks may react on resource allocation failures and event
imponderabilities without blocking the whole system. Each
task ¢ has its individual and dynamic base priority P, and
an active priority p(t) when using PIP for resource sharing.
In general, each task may wait for at most one event or
resource at the same time but it may hold several resources
simultaneously. Allocation and deallocation orders are always
arbitrary and independent. Beside the CPU, resources are
always treated as non-preemptive and will never be withdrawn.
Once assigned, each owner task is responsible for releasing its
resources. For on-demand resource handover, dynamic hinting
was integrated as presented in [18] and Section III-A.

B. CoMem Implementation Details

Next, we’ll show how to achieve the CoMem design consid-
erations from Section III-B. Regarding the tight performance
and memory constraints of many embedded systems, CoMem
is limited to three central functions and one Memory Control
Block (MCB) for each dynamic memory block:

1| typedef struct {
unsigned int size; //1W: size in machine words

3 volatile int xbase; //1W: (absolute) start address
Resource_t broker; //2W: associated resource

5 advise_t advise; //1W: What to do upon a hint
MCB_t *next; //1W: linked list pointer

7| } MCB_t; // Total RAM size: 6W

Since we want tasks be be informed immediately if they
block a higher priority task due to a dynamic memory alloca-
tion, we associate one SmartOS resource — a so called broker —
with each allocated memory block. The broker grants directed
influence by the resource manager on the task holding the
block. While this communication option is entirely missing
in all memory management systems we found so far, it does
not only allow the targeted generation of hints (via dynamic
hinting) but also provides two important advantages:

1. We implicitly adapt the underlying resource management
policy (e.g. PIP) for the memory management subsystem.
Thus, all system resources and memory blocks are treated
in the same way and respect the task priorities equally.

2. CoMem can be implemented as library and does not
produce additional overhead within the kernel.

In contrast to many other approaches which maintain a
list of free memory areas [16], CoMem uses a linked list of

972

malloc(m*, s, 1) {

m->size = s
retry = 1

free (m*) {
removeFromMCL (m)
releaseResource (m->broker) &——r

Juny

. Retry until success or timeout...

while (retry == 1) {

setEvent (§MCLChanged) @—#— m’ = insertIntoMCL (m) 2. Try to find continuous space
} clearEvent (&MCLChanged) or a blocking task ...
if (m->base != NULL) {

Critical sections

relocate (m*, doCopy) { J!_f (m’
delta = relocateInMCL (m)
if (doCopy)

moveDataBy (m, delta)
releaseResource (m->broker) o—
getResource (m->broker) }
setEvent (&MCLChanged) or— }

return delta return 0

! }

} else {

Figure 3.

MCBs for currently allocated blocks. Internally, this Memory
Control List (MCL) is sorted by base address pointers and thus
allows linear scanning for continuous free areas of sufficient
size for new requests. Though other data structures might
scale better for many simultaneous allocations, a simple list’s
low complexity is in line with the typically restricted sensor
node performance and still provided good results within our
testbeds. In fact, allocated blocks must be scanned anyway to
select one for reorganization. Complexity: O(n).

Since CoMem’s public functions are executed concurrently
in each callers’ context, access to the MCL is protected by
a unique SmartOS semaphore which results in critical (not
atomic!) sections (—Fig. 3).

For allocations via malloc (), we supply three parameters:

1) An MCB m for managing the block. Since MCBs are
supplied by tasks as required, the CoMem library needs
not to reserve a fixed number in advance.

2) A requested size s for the continuous block.

3) A deadline 7 for limited waiting in case of currently
insufficient continuous free space.

Internally, malloc () loops until the request succeeds or
the timeout is reached (Line L4). Initially each retry attempts
to insert the new block into the MCL (first-fit, L5). On success
(L7), the corresponding broker resource my, is locked by the
caller and we are done. Since m; belongs to the block owner
o(m) then, it is sufficient for another task with higher priority
to request this very resource if it is blocked by o(m).
Indeed, this is exactly what happens if sufficient space is
not available but a disturbing memory block m’ was found
(L11). By the resource request (LL12), PIP adapts the active
priority p(o(m')) of the blocking owner o(m’). If dynamic
hinting is enabled, the resource manager immediately passes
a hint to o(m’) to indicate its disturbing influence. If o(m’)
reacts by releasing/relocating its block m’ before the deadline
7 has expired, it also releases mj, temporarily (free ():L3,
relocate ():L5) to indicate the changed memory situation
and to trigger a new retry for m. If the deadline expired,
retrying stops and malloc () returns O (L18). If no blocking
task/block was found (L14), malloc () waits for the next

getResource (m->broker)
return 1

'= NULL) { 4.
3P retry =

releaseResource (m’ ->broker)

—a5——) retry =

w

. Space found! Lock resource
and return success!

No space found but a task m” which
might help us! Hint by requesting

getResource (m’ ->broker, 1) . &
its corresponding broker resource.

(%2}

. No space or blocking task
found! Wait for the next
change to the MCL!

waitEvent (&MCLChanged, T)

6. Timeout.

CoMem Function Interactions

modification to the heap space. Again, if this happens within
the deadline one more retry is triggered, otherwise O is
returned to also indicate the timeout (L18).
Accordingly, free () and relocate () are rather simple:
free () simply removes the specified MCB m from the
MCL and releases the broker resource my. Finally, it indicates
the MCL modification by setting the corresponding event.
relocate () searches a new location for the supplied
block m (cyclic next-fit) by which more continuous free space
becomes available (L2). If requested, it moves the data to the
new location. Finally, it temporarily releases its own broker
resource my, (L5/6) and triggers the MCLChanged-event (L7)
to resume waiting tasks. The data shift is returned in bytes.
The remaining problem is how to reasonably select a
blocking MCB m/ for generating a hint on. While scanning the
MCL for free space, we search for two types of MCBs: The
first one would at least produce the requested space if it was
relocated and the other one if it would be released entirely. In
consequence, m/, ;... will be set to either relocate or release
while relocate takes precedence and the corresponding block
with the lowest priority owner is selected for hinting. Thus,
along with the hint its owner also receives the advise for a
suitable reaction. When considering the blocked task, a release
is always at least as effective as a relocation.

V. REAL-WORLD APPLICATIONS AND TEST BEDS

For analyzing our CoMem approach of combining tempo-
rally limited memory requests, on demand heap reorganization
via dynamic hints and the priority inheritance protocol, we
extended SmartOS as described. The implementation was done
for Texas Instrument’s MSP430 [21] family of microproces-
sors, since these are found on a large variety of sensor nodes.
Requiring 4 + 1 kB of ROM and 40 + 8 B of RAM for the
whole kernel and the CoMem library, the typically small
memory footprint of sensor nodes was considered carefully
to leave sufficient room for the actual application. Our test
scenarios were executed on SNOW? sensor nodes [22] with
an MSP430F1611 MCU running at 8 MHz. For detailed per-
formance analysis at runtime, we used the integrated SmartOS
timeline with a resolution of 1 us.

973

P1. Classic Approach

P2. Priority Inheritance Protocol

P3. Hint Handler P4. Early Wakeup

)
T 100000 o S P 1t 160
g 10000 eni e ~:© ol S =140
) 1000 120
2 100 100
I-It 10 { % i 80
@ 1 60
: o H T
0,01 20
g 0,001 m_n I | I m I | | l I | l 0
© 01234567 89A 01234567 89A;01234567809A.;01234567809AA
Allocation Delay 0 [ms] A Achievable best Task ID & Priority Hint Count
(min/max/av.) case:dp-=0.226ms (within 10min) *
3 < o =)
S 100000 55 n o -4 o2 160
S 10000 TR i CREN =™l 140
) 1000 120
) 100 100
o 1 60
g 0,1 (] [40
i 0,01 I I I I 20
T o001 N | 0
) 01234567 89Ai 01234567 8 9A. 01234567 89A:0 12345678 9iA

Figure 4. CoMem stresstest results for different policies and heap sizes (ascending base priorities for n = 10 tasks)

A. Dynamic Memory Stresstest

The first scenario analyzes our approach under extreme con-
ditions with n tasks ¢y - - - ¢,,—1 and many concurrent memory
requests. Ascending base priorities P;, = ¢ were assigned
and each task executed the same code repeatedly: (1) sleep,
(2) request dynamic memory, (3) operate on the memory, (4)
release the memory.

The duration of step (1), the CPU time of step (3) and
the size of the requested memory blocks were randomized
for each iteration. This way, we obtained significant heap
space fragmentation and task blocking which needed handling
at runtime. Though we used an infinite deadline 7 o0
for allocation, each task measured the execution time ¢ of
malloc () and logged its minimum, maximum and average
allocation delays 6min, Omaz, 0qv- Furthermore, it registered
the number of received hints. For comparing the allocation
delays in relation to the task priorities, we applied two non-
collaborative and two collaborative policies P1-P4:

P1 Classic: Here, we omitted the request for a blocking task’s
broker resource during malloc () (L12). Instead we al-
ways waited for the MCLChanged event if no continuous
space was found. This avoided hints and the chance for
collaborative memory sharing entirely.

PIP only: We implemented malloc () as shown in Fig. 3
but simply ignored the emerging hints. Though a blocking
task did not collaborate explicitly, its active priority was
at least raised to the priority of the task it blocked and it
received more CPU time for step (3), then.

Hint Handlers: This time, each task supplied a hint han-
dler for immediate injection into its own execution when
blocking a higher prioritized task.

Early Wakeup: Finally, we implemented the tasks to sleep
while holding a memory block. Yet, tasks were resumed
immediately when blocking a higher prioritized task.

P2

P3

P4

For collaboration under P3 and P4, a task t; treated its
hints as follows: First, ¢;, stopped the operation on its memory

block. Depending on the advise from the CoMem subsystem,
ty, either called free () or relocate (). As intended, this
caused the immediate allocation success and the scheduling of
a directly blocked task ¢z with higher priority. This is always
true since ¢y then held the highest priority of all tasks in ready
state and t;, did let ¢ ’pass by’. When scheduled again, ¢,
tried to continue its operation quickly. In case of relocate it
reused the old but shifted block. In case of free it re-requested
a block of the old size. Please note that the data continuity
within the memory blocks was not considered by this test (see
Section V-B instead). Just the allocation delay was analyzed
for reactivity and response time evaluation.

We configured the test bed using several task counts n, heap
sizes sy and randomized block sizes sp under the policies
described above. Since the results always showed similar main
characteristics, we just present the analysis for n = 10 tasks,
block sizes of sp € {32,64} words and heap sizes of sy €
{320,480, 640} words. Each setup was executed for 10 min.

As expected, all allocations succeeded immediately when
sufficient heap space sy = 640 words was available to serve
all requests even in the worst case. Though static memory
assignments would suit much better then, we did this cross-
check to see if the influence on the CPU load is already
observable: Indeed, while the hint count remained 0O, the
average allocation delay already settled around §,,=280 us for
each task and policy. In comparison, the best case execution
time of malloc () (only one task and immediate success
without preemption) was dpc=226 ps.

Selecting sg := 10- % = 480 words (the required heap
size for the average case) already shows the benefit of our col-
laborative approaches (—Fig 4a). While the non-collaborative
approaches deliver almost uniform average allocation delays
around 161 ms (P1) and 69 ms (P2), both do not reflect
the task’s intended base priorities at all. In contrast, using
hints manages to reliably signal tasks about their blocking
influence and allows them to react adequately. Considering the
average and maximal allocation delays, the task priorities are

974

visibly reflected by both collaborative policies P3 and P4. By
following their hints, low priority tasks obviously allow higher
priority tasks to achieve short allocation delays. Compared to
P1 and P2, not even t; suffers from significantly increased
blocking, while several high priority tasks are very close to
the achievable best case of =226 us, now. In average, g,
roughly improved by factors 10 and 5, respectively.

Reducing sy := 10- 32 = 320 words increases competition
and allocation delays to be even more demanding (—Fig 4b).
Still, the different task priorities are not visible for P1, while
the sole PIP showed slight improvements for P2 under this
heavy load. However, their average allocation delay increased
by factor 7 and even 23, respectively. Since blocking occurs
more often now, the hint count also increases significantly
for the collaborative concepts. Yet, these still manage to
serve tasks according to their intended relevance: the two
most important ones still achieve an average delay of §,, ~
1 ms while even the lowest prioritized ones are still at least
as reactive as with the non-collaborative approaches. Again,
similar results are also visible for 6,,,,. Please note that each
task’s hint count highly depends on its number of successful
memory allocations. Since requests from low priority tasks
are granted less frequently, these also generate less hints.
Medium priority tasks are served more often, tend to cause
more blockings and finally receive more hints. While requests
from high priority tasks are also commonly granted, these
rarely block still higher prioritized tasks. In fact, the peak
can be shifted towards the low priority tasks by increasing the
sleep time (1) between two allocations while increasing the
operation time (3) reverses this effect.

This testbed addressed allocation delays for dynamic mem-
ory in case of sporadic requests and varying task priorities. We
pointed out that dynamic dependencies (via broker resources)
between blocking and blocked tasks can reduce these delays in
general and account for the specific task priorities in particular.
While PIP already showed rudimentary success for heavy load
situations, hints boosted this effect significantly and allowed
almost best case delays for high priority (real-time) tasks.

B. Real World Example

The second testbed considers a problem from one of our
real-world projects. The infrastructure of our ultrasound based
indoor vehicle tracking system SNoW Bat [23] comprises
several static anchors as references for the applied localization
algorithms. These anchors run six preemptive tasks for several
software modules (i.e. radio communication, temperature com-
pensation, etc). Two tasks are exceptionally memory intensive:
tys runs a DSP algorithm for ultrasound chirp detection,
recording and processing — i.e. calculating the time-of-flight
between a synchronizing radio packet and the corresponding
chirp. Each time it uses a capture compare unit to trigger
an ADC/DMA combination which in turn samples the chirp
signal into a buffer of 4 kB. Then the DSP calculates the
arrival of the first wavefront with a precision of ~ 5 us.

In parallel, each node runs a task ¢tgpc for a remote man-
agement and software update system. Compared to other parts

[heap memory ty s mode ty s hint handling Omaz (tRC)]
free - - 226 us
alloc. by tys idle just free the memory 1301 us
alloc. by tys sampling stop DMA/ADC & free 1351 us
alloc. by tys DSP abort DSP & free 1342 us
alloc. by tys sampling/DSP free after measurement 141284 ps

Table 1
MEMORY ALLOCATION DELAYS WITHIN SNOW BAT

of the system, this service is rarely used. But as soon as a
new firmware image is announced via radio, trc requests
n - 256 B of RAM and successively fills this buffer with image
fragments of 256 B each. After n radio packets, the buffer is
transferred to an external flash memory (block size: 256 B).
This is repeated until the entire image was received. For
optimizing the data rate and energy consumption, n should
be as large as possible. This reduces frequent switching of
the SPI-communication between radio and flash as well as the
spacing delay between successive radio packets. Furthermore,
the external flash consumes less time and energy when pow-
ered up less frequently but for longer burst writes. In fact we
use n = 20 and thus require 5 kB for the buffer.

From the 10 kB of the controller’s RAM, kernel and tasks
require about 4 kB. The remaining 6 kB are used as heap
space for dynamic memory. Thus, the chirp sampling buffer
(4 kB) and the image data buffer (5 kB) must be allocated
dynamically. In fact, aborting or not even starting a chirp de-
tection is not that critical: The node will be available for later
measurements. Missing an image fragment is highly critical
indeed! Though ACKSs and other safety strategies are applied,
an incomplete reception causes expensive retransmissions and
write accesses to the external flash. Thus, tgc imposes an
upper bound for its memory allocation delay.

This real-time demand can easily be solved with our
CoMem approach: Since tyg requires its buffer quite fre-
quently (up to 3 Hz), it allocates the memory at system
start and configures the DSP process and DMA controller
according to the assigned base address. Yet, {gc is more time-
critical and thus receives a higher base priority P;, . > Py .
As soon as trc requests dynamic memory, tys is “hinted’
immediately. If the sampling buffer is currently not in use,
it is simply released to serve trc quickly. Otherwise, tyg
requests the blocked task’s remaining allocation deadline T
for application of a simple time-utility-function: If 7 won’t
allow to release the memory in time, {7 simply ignores the
hint and continues its operation — leading to an unavoidable
deadline violation for the blocked task trc. Otherwise, it
initiates an untimely but controlled abortion of the current
measurement. In particular, this includes adequate handling
of active ADC and DMA operations. Since CoMem implicitly
applies PIP to raise p(tys) > Pi,. while tgc blocks on
malloc (), the WCRT of tyg’s hint handling defines the
minimal tolerable delay between image announcement and the
first fragment. After memory deallocation, PIP will reduce
p(tvs) = Piys < Pip. again and tpc is served and
scheduled promptly. In turn, ¢y;g will re-request its sampling
memory as soon as possible for further measurements — and
will receive it when trc has completed the image reception.

975

Table I shows the results for ¢t z’s worst case allocation de-
lays. If ¢ty would only release its memory after each complete
measurement, trc would be blocked for 6,4, ~ 141.3 ms in
worst case. Using hints from our CoMem approach allows
an almost immediate handover which is just limited by the
required time for aborting any currently running operation.
Then, we observed 9,4, < 1.4ms and can finally use a
memory allocation deadline of 7 = 2 ms for trc.

This test bed showed, that CoMem allows tasks to coor-
dinate sporadic memory requirements without explicit com-
munication. Our approach provides sufficient information (via
hints) and adequate task priorities (via PIP) to allow tasks an
reflective resolution (via TUFs) of their blocking influence.
In fact, a blocking task needs not to know which task it
blocks. Beside the advantage of time aware on-demand mem-
ory handover in sporadic real-time systems, termination and
reconfiguration of dependent resources (e.g. ADC and DMA)
or subsystems (e.g. DSP) is limited to a minimum.

VI. CONCLUSION AND OUTLOOK

In this paper, we introduced the novel CoMem approach
for collaborative memory sharing among preemptive tasks in
reactive systems. We showed, that CoMem can help to improve
and stabilize the overall system performance by reducing allo-
cation delays. In particular, individual task base priorities are
considered carefully to keep each task’s progress and reactivity
close to its intended relevance. The basic idea is to analyze
emerging task/memory conflicts at runtime and to provide
blocking tasks with information about how to safely reduce
the blocking of more relevant tasks. By following these hints,
tasks can implicitly collaborate without explicit knowledge of
each other. This even reduces bounded priority inversions and
achieves allocation delays which are just limited by the pure
handover overhead (i.e. deallocation and reallocation). The
reflective concept even allows each task to decide dynamically
between collaborative or egoistic behavior with respect to its
current conditions and other tasks’ requirements. However,
CoMem can not guarantee any time limits since these highly
depend on the behavior of the involved tasks. Yet, even if
used sparsely, our approach is definitely better compared to
non-collaborative operation. Thus, a well-thought application
design still remains elementary, but compositional software is
already facilitated. In fact, our approach is not limited to the
WSAN domain but may also extend other embedded systems.

The test beds and the integration of our novel concept
into the real-time operating system SmartOS showed, that the
effective use of preemptive tasks for creating reactive systems
is even feasible on small embedded devices like sensor nodes:
High priority tasks almost achieved the theoretical best case
reactivity while low priority tasks did hardly lose performance.

At present we are working on improved hint generation and
application of TUFs by considering more application specific
factors like programming-by-contract for limiting the WCRT
of hint handlers. Another area is the evaluation of CoMem
within multi-core systems [24], [25] where blocking may
induce hints between the subsystems.

(1]

[2]

[3]
[4]

[5]

[6]

[7]

[8]

[9]

(10]

(11]

[12]

[13]

[14]
[15]

(16]

[17]

(18]

[19]

[20]

[21]
[22]

[23]

[24]

(25]

976

REFERENCES

R. S. Kavi Kumar Khedo, “A Service-Oriented Component-Based
Middleware Architecture For Wireless Sensor Networks,” Int’l Journal
of Computer Science and Network Security, vol. 9, no. 3, Mar. 2009.
A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - A Lightweight and
Flexible Operating System for Tiny Networked Sensors,” in LCN 2004:
29th IEEE Int’l Conference on Local Computer Networks.

I. Lee, J. Y.-T. Leung, and S. H. Son, Eds., Handbook of Real-Time and
Embedded Systems. CRC Press, 2007.

Giorgio C. Buttazzo, “Real-Time Scheduling and Resource Manage-
ment,” in Handbook of Real-Time and Embedded Systems, 1. Lee, J. Y.-T.
Leung, and S. H. Son, Eds. CRC Press, 2007.

N. Audsley, R. Gao, A. Patil, and P. Usher, “Efficient OS Resource Man-
agement for Distributed Embedded Real-Time Systems,” in Proceedings
of Workshop on Operating Systems Platforms for Embedded Real-Time
applications, Dresden, Germany, Jul 2006.

J. A. Stankovic and K. Ramamritham, “A reflective architecture for real-
time operating systems,” in Advances in real-time systems. Prentice-
Hall, Inc., 1995, pp. 23-38.

P. Li, B. Ravindran, and E. D. Jensen, “Adaptive Time-Critical Resource
Management Using Time/Utility Functions: Past, Present, and Future,”
Computer Software and Applications Conference, vol. 2, 2004.

H. Min, S. Yi, Y. Cho, and J. Hong, “An efficient dynamic memory
allocator for sensor operating systems,” in SAC ’07: Proceedings of the
2007 ACM symposium on Applied computing. ACM, 2007.

M. M. Michael, “Scalable lock-free dynamic memory allocation,” in
PLDI *04: Proceedings of the ACM SIGPLAN conference on Program-
ming language design and implementation. ACM, 2004, pp. 35-46.
M. Masmano, I. Ripoll, P. Balbastre, and A. Crespo, “A constant-
time dynamic storage allocator for real-time systems,” Real-Time Syst.,
vol. 40, no. 2, pp. 149-179, 2008.

G. Teng, K. Zheng, and W. Dong, “SDMA: A simulation-driven dy-
namic memory allocator for wireless sensor networks,” International
Conference on Sensor Technologies and Applications, vol. 0, 2008.

D. Lea, “A memory allocator,” http://g.oswego.edu/dl/html/malloc.html.
P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles, “Dynamic
storage allocation: A survey and critical review.” Springer-Verlag, 1995.
U. Berkeley, “TinyOS,” Web site http://www.tinyos.net/, 2010.

C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava, “A dynamic
operating system for sensor nodes,” in MobiSys '05: Proceedings of
the 3rd international conference on Mobile systems, applications, and
services. New York, NY, USA: ACM, 2005, pp. 163-176.

S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth, B. Shucker,
C. Gruenwald, A. Torgerson, and R. Han, “MANTIS OS: an embedded
multithreaded operating system for wireless micro sensor platforms,” in
Mob. Netw. Appl., vol. 10, no. 4. Kluwer Academic Publishers, 2005.
M. Kuorilehto, T. Alho, M. Hinnikdinen, and T. D. Hiaméldinen, “Sen-
soros: A new operating system for time critical WSN applications.” in
SAMOS Workshop on Systems, Architectures, Modeling, and Simulation.
Springer, 2007.

M. Baunach, “Dynamic hinting: Real-time resource management in
wireless sensor/actor networks,” in RTCSA ’09: Proceedings of the
2009 15th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications, 2009, pp. 31-40.

L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority Inheritance Protocols:
An Approach to Real-Time Synchronization,” IEEE Trans. Comput.,
vol. 39, no. 9, pp. 1175-1185, 1990.

M. Baunach, R. Kolla, and C. Miihlberger, “Introduction to a Small
Modular Adept Real-Time Operating System,” in 6. Fachgesprich
Sensornetzwerke. RWTH Aachen University, 16.—17. Jul. 2007.
MSP430x1xx Family User’s Guide, Texas Instruments Inc., 2006.

M. Baunach, R. Kolla, and C. Miihlberger, “SNoW?: A versatile ultra
low power modular node for wireless ad hoc sensor networking,” in 5.
GI/ITG KuVS Fachgesprich Drahtlose Sensornetze, 17.—18. Jul. 2006.
M. Baunach, R. Kolla, and C. Muehlberger, “SNoW Bat: A high precise
WSN based location system,” Univ. of Wuerzburg, Tech. Rep. 424, 2007.
S. Ohara, M. Suzuki, S. Saruwatari, and H. Morikawa, “A prototype of
a multi-core wireless sensor node for reducing power consumption,” in
SAINT ’08: International Symposium on Applications and the Internet.
Washington, DC, USA: IEEE Computer Society, 2008.

A. Easwaran and B. Andersson, “Resource sharing in global fixed-
priority preemptive multiprocessor scheduling,” in IEEE Real-Time
Systems Symposium, T. P. Baker, Ed. IEEE Computer Society, 2009.

