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Abstract—Increasing complexity of today’s WSAN applications
can rapidly result in reduced real-time capabilities of the underly-
ing sensor nodes. Using preemptive operating systems is one way
to retain acceptable reactivity within highly dynamic environ-
ments but commonly leads to severe resource management prob-
lems. We present the Dynamic Hinting approach for maintaining
good system reactivity by efficient combination of preemptive
task scheduling and cooperative resource allocation. With respect
to task priorities, our technique significantly improves classical
methods for handling priority inversions under both short- and
long-term resource allocations. Furthermore, we facilitate com-
positional software design by providing independently developed
tasks with runtime information for yet collaborative resource
sharing. In some cases this even allows to improve blocking delays
as otherwise imposed by bounded priority inversion.

I. INTRODUCTION

The ever increasing size, pervasiveness and demands on

today’s wireless sensor/actor networks (WSAN) significantly

boost the complexity of the underlying nodes. Thus, modular

hardware and software concepts (e.g. service oriented pro-

gramming abstractions) are more and more used to manage

design and operation of these embedded systems. Then, ade-

quate interaction between the various modules is essential to

avoid typical compositional problems. Beside task scheduling

[1], directly related issues comprise resource sharing or even

real-time operation [2]. Concerning this, we find that current

WSN research is still too limited to static design concepts. Yet,

as already stated in [3], next generation embedded systems

will be more and more used as reactive real-time platforms

in highly dynamic environments where the true system load

varies and can not be predicted a priori during development.

In fact, we also expect a clear focus shift from pure sensing

in classic WSNs toward additional pro-activity in WSAN ap-

plications (e.g. integrated control systems, precise on demand

measurements, time services, etc.). Then, preemptive and pri-

oritized tasks are required for fast response on various events

but further complicate resource assignment and reactivity.

In this paper we present the Dynamic Hinting approach for

cooperative resource sharing and real-time operation within

preemptive operating systems. Dynamic hinting enables com-

positional software design by allowing independently imple-

mented tasks a collaborative use of shared resources. As often

suggested (e.g. in [4]), we take advantage of the resource

manager’s enormous runtime knowledge about the system’s

current requirements. This information is carefully selected

and forwarded to exactly those tasks, which currently block

the execution of more relevant tasks by a resource allocation.

In turn, these so called hints allow blocking (and even dead-

locked) tasks to adapt to current resource demands and finally

to contribute to the system’s overall reactivity and stability. In

some cases, even delays which would otherwise occur due to

bounded priority inversion can be reduced, and accounting for

the task priorities as defined by the developer is simplified.

The decision between following or ignoring a hint is made

by each task autonomously and dynamically at runtime, e.g.

by use of appropriate time-utility-functions [5]. To allow long-

term allocations (as frequently required for hardware) dynamic

hinting extends the classic priority inheritance protocol and

avoids some related shortcomings of other techniques.

This paper is organized as follows: Initially, we will further

motivate the need for real-time and preemptive operating

systems in sensor networking. Then, we’ll outline some related

concepts from existing work. The concepts and details about

our new approach will form the central part of this paper.

Furthermore, an exemplary implementation of dynamic hinting

will show that – despite of the problem’s complexity – it is

efficiently usable even for low performance devices like sensor

nodes. Therefore, we will present application examples and the

impact on the programming model before performance results

from real-world test beds close this paper.

II. MOTIVATION AND REQUIREMENTS

An operating system has significant influence on the overall

system performance since it coordinates task interactions as

well as the access to operational resources like hardware

components or data structures. In many cases, these resources

need to be shared among several tasks. For some of them,

exclusive access must be granted at least temporarily to avoid

task race conditions, resulting malfunctions or even system

breakdown. Unfortunately, resource assignment in complex,

modular systems with concurrently running tasks is hard to

manage during development and runtime. This is particularly

true, if tasks are allowed to use virtually any available re-

source in any order and if they may even require exclusive

access to several of them at the same time. As long as

allocation times remain relatively short or if the runtime re-

quirements are roughly predictable, efficient methods already

exist (→Sections III, IV). However, if long-term allocations

collide with sporadic but time critical on demand allocations in

dynamic environments, smart adaptive techniques are needed

to still provide good reactivity.



Whereas the main resource of each computing system, the

processor, is often managed by the task scheduler in a pre-

emptive way, we believe that the operating system should also

coordinate access to other, exclusive resources by contributing

appropriate mechanisms. Indeed, several resource management

techniques were already implemented for sensor nodes but

most of them do not address the special aspects of reactive

real-time operation.

A. Requirements for Sensor/Actor Networking

During our research and practical work, we found that

reactivity and pro-activity in modern WSAN applications

requires quite sophisticated real-time and resource concepts.

We’ll give just one short example from one of our real-world

applications for motivating this need toward the reader:

A radio protocol task commonly requires long-term alloca-

tion of the used transceiver in combination with relatively short

but sporadic access to the interconnection bus. Obviously,

both resources need specific configuration and thus are non-

preemptive. Using the bus becomes time critical when radio

transmission slots must be obeyed or when a receive buffer

must be read and cleared quickly to allow the reception of

further radio packets. Concurrent to this communication task,

sensor tasks often use exactly the same bus for continuous

streaming of data (e.g. from an ADC to some external con-

sumer). Again both resources are non-preemptive but this

time, the bus is also locked in a long-term allocation. The

resulting compositional problem is already hard to solve. Even

if task priorities can be selected carefully to indicate the

desired relevance of each task, their compliance can not be

guaranteed. Instead, knowledge about the overall system load

(including further tasks) must be incorporated manually into

the code. The regular release of a long-term resource could be

a solution. However, this strategy might impose considerable

overhead when deallocation and re-allocation are expensive

in time and energy. Where data streams often require explicit

termination (trailers) and initiation (headers), resources might

require a time-consuming (de)initialization procedure upon

each (de)allocation. Using server tasks for managed operation

of such resources is also no universal option if the performance

for this abstraction is simply not available.

In addition to sporadic resource sharing, we found the use of

dynamic task priorities convenient for adaptation to changing

environmental conditions. However, this complicates resource

sharing even further but should be considered. After motivating

our requirements for real-time resource management in WSAN

systems, we’ll now overview some related work.

III. RELATED WORK IN WSN/WSAN SYSTEMS

Non-preemptive systems with run-to-completion tasks are

very common in sensor/actor networking and prevent some

conflicts implicitly since their executions can’t be interleaved.

If tasks need to hold exclusive access to certain resources

over several runs, a frequent approach is to implement server

tasks or stateful function libraries for these resources. Such

an abstraction layer allows sharing or even virtualizing of

resources like in the TinyOS component concept [6]. How-

ever, large resource hierarchies might result in severe inter-

communication overhead and reduced overall performance.

Additionally, run-to-completion tasks often provide bad

reactivity to sporadic events since they can not easily be

suspended for any more important action. Indeed, interrupt

handlers might react quickly, but using resources therein is

seldom wise since these might currently be unavailable and

the attempt could block the whole system for quite some

time. Event-driven systems like TinyOS solve this problem,

by simply posting an appropriate handler task during the

interrupt service routine. However, its true execution delay is

unknown and again depends on the currently running task and

the scheduling policy. Notice, that the non-preemptive use of

the CPU can already lead to priority inversion then (→Section

IV). Therefore, TinyOS and Contiki [7], which natively also

runs non-preemptive tasks, both support so called TOSThreads,

and protothreads respectively. These are preemptive but lack

priorities and resource management entirely.

Preemptive systems potentially provide much better reac-

tivity. Here, a task can be suspended at any time for a

more important action implemented in another task. Therefore,

individual priorities commonly define each task’s relevance.

Yet, this feature also complicates resource sharing: Preemption

yields no instant advantage if the action requires a shared

resource which is exclusively held by a less important task.

Resulting problems like priority inversion [8] might lead to

thwarting of high priority tasks and even deadlocks may occur.

To cope with some of these issues, well studied protocols

like priority ceiling (PCP), highest locker (HLP) or priority

inheritance (PIP) [9], [10] are found in some embedded

operating systems. Beside causing some runtime overhead,

these techniques also suffer from certain weaknesses addressed

in the next section. Furthermore, preemptive WSN operating

systems like e.g. MANTIS [11] or RETOS [12] do not

consider real-time or resource related problems at all.

IV. RESOURCE MANAGEMENT IN PREEMPTIVE SYSTEMS

Priority inversion is an inherent problem of preemptive,

prioritized tasks. Here, the competition for a single non-

preemptive resource may already lead to (temporary) blocking

of a high priority task H if it requests a resource currently

allocated by a lower priority task L. Figure 1a shows this direct
dependency problem which is known as bounded priority in-

version. If an additional task M with medium priority prevents

L from running and thus from releasing the resource, this

indirect dependency is known as unbounded priority inversion

(→Fig. 1b) and might even result in the final suspension of H .

In both cases, the task priorities defined by the developer are

not obeyed as desired, leading to unexpected behavior, reduced

reactivity and real-time capability of the overall system.

The already mentioned PIP, PCP and HLP techniques face

this problem by adjusting task priorities dynamically at run-

time according to the current resource assignment situation.

From these alternatives, we selected the priority inheritance

protocol as basic technique for our dynamic hinting approach.



Though priority ceiling and highest locker inherently prevent

deadlock situations and even restrict the maximum allocation

delay to at most one blocked resource per task, both tech-

niques imply a serious problem regarding long-term resource

allocations. Except for this problem, we won’t go into detail

about these techniques here but refer to [2], [9], [13] instead.

For deadlock avoidance, HLP and PCP use a rather con-

servative policy when adjusting task priorities and deciding if

a resource request is granted or denied. In some cases this

rapidly leads to a problem often referred to as avoidance-

related-inversion [13]: If a task T1 with current priority p(T1)
holds a resource, PCP refuses the assignment of any remaining

but free resource r to any other task T2 with p(T2) ≤ p(T1).
HLP implicitly acts in a similar way by avoiding the execution

of such a task T2 entirely [10]. Although these implicit and

anticipatory reservations would allow a fast assignment of

further resources to T1, it is critical in many respects. First,

T2 is rejected even if r will not be allocated by T1 for a

long time. Second, for performance in many implementations,

T2 will also be rejected if it does not even share a single

resource with T1. Finally, the penalty is even worse if the

protocol raised p(T1) above its original base priority while

in fact, T2 is specified to be truly more relevant than T1. In

summary, a task implicitly blocks all other tasks with equal or

lower priority while it simply holds a (maybe rarely shared)

resource. When recalling our motivation for both real-time and

long-term resource allocations from Section II-A, it becomes

obvious that such a behavior is highly critical. Another prob-

lem with PCP/HLP is that dynamic base priorities are hard to

implement. This option would either bring back deadlocks, or

it must be disabled for tasks which currently hold or request

a resource. Yet, this flexibility is interesting for reflecting

changing environmental conditions or for server tasks which

adopt to the priority of their (most relevant) clients.

Compared to PCP and HLP, PIP is much more generous

when granting resource requests and sometimes gains a better

average case performance. Here, requests for free resources

are always granted immediately: The successful allocation

of a resource r by a task L will initially leave L’s priority
unmodified. Then, as soon as a task H with higher priority

requests r, L will be raised to the priority of H . This avoids

unbounded priority inversion and allows L a fast deallocation

of r. By doing so L’s priority is reduced again, H obtains r
and is finally resumed.

Indeed, PIP may lead to chains of resource blocked tasks

(chained blocking) and even deadlocks may occur. Whether

these can still be prevented entirely depends on the applied

resource management policy [14]. However, we will show

that both shortcomings can be handled by our extension

in an efficient manner. In our opinion, deadlock avoidance

is not very practical in most WSAN applications. E.g. the

frequently recommended Banker’s algorithm starts a new task

only if its worst case resource requirements can still be

satisfied when all other running tasks also claim their demands

entirely. Maintaining this so called safe state implies two

major problems. First, a (time critical) task might not start

Figure 1. Priority Inversion (bounded and unbounded)

promptly when required. Second, two tasks that might require

the same unique resource may never run interleaved. Another

strategy is to require the allocation order for resources to be

fixed and inverse to their release order. In many scenarios

this is neither possible nor desired. The constraint might even

cause resources to remain allocated longer than really required

by the task logic. So, deadlock detection and recovery is

often needed. Terminating a spurious low priority task or

withdrawing its resources for the benefit of a more important

one is critical. While undoing the work so far, it might also

leave the resources in an undefined state making a handover

problematic. Counteracting with checkpointing and roll-backs

of whole tasks and involved resource states is hard or even

impossible. Even if rarely used, this would produce enormous

system load and memory overhead on typical sensor nodes.

So far, we presented our requirements for real-time aware

resource management in WSAN applications along with some

already available concepts and systems. Additionally, we moti-

vated our decision for using the priority inheritance protocol as

basis for our new approach since it inherently allows long-term

resource allocations without avoidance-related-inversions.

V. RESOURCE MANAGEMENT AND DYNAMIC HINTING

This section presents the details about our resource man-

agement approach. In fact, the basic idea behind dynamic

hinting might be applied as integral concept for many (em-

bedded) real-time operating systems if these support truly

preemptive and prioritized tasks plus a timing concept that

allows temporally limited resource requests. For our reference

implementation we extended SmartOS [15] since it is available

for several sensor nodes, provides appropriate task, timing and

resource basics, and thus allowed an easy integration.

Since SmartOS was developed for reactive systems, it

inherently supports fully preemptive and prioritized tasks.

Each task has its individual and dynamic base priority. This

satisfies our request for easy adaptation to changing demands

and environmental conditions at runtime. Furthermore, the

kernel maintains a local system time and enables tasks to

suspend themselves for/until a specified time (sleep). Most

important for dynamic hinting, the integrated timing concept

allows temporally limited waiting for events and resources

with a certain (relative) timeout or (absolute) deadline. This

way, tasks may react on resource allocation failures and event

imponderabilities without blocking the whole system. Beside,

this already provides a simple method for deadlock recovery.

We’ll now formalize the extended resource management

policy of SmartOS (V-A) along with our new approach for

priority inheritance (V-B) and dynamic hinting (V-C).



Figure 2. Task State Transitions under SmartOS

A. Extended SmartOS Specifications

S1 Each SmartOS system consists of a set of preemptive tasks

T (|T | ≥ 1) and resources R (|R| ≥ 0). Each task is

executed for the whole system runtime and can neither

be started dynamically nor terminate entirely. Instead it

is always in one of the following states (→Fig. 2): ready,

running, or waiting. On startup, all tasks are in ready state.

S2 Each task t has a base priority Pt which is defined at

compile time and can be changed at runtime.

We additionally introduce an active priority p(t) ≥ Pt

which is assigned by our resource management approach.

At system start ∀t∈T : p(t) = Pt holds.

The scheduler always selects a task with highest active

priority in ready state for execution. For tasks with equal

priorities, either round-robin or run-to-completion schedul-

ing can be selected at compile time.

S3 State transitions can be triggered in three ways (→Fig. 2):

a) active-to-waiting: the running task changes its own

state to waiting by sleeping, requesting a resource

which is currently allocated by another task, or by

waiting for a not yet occurred event.

b) active-to-ready: the running task might transit to ready

state by releasing a resource or by invoking an event

for which a higher prioritized task is already waiting.

Reducing its own base priority might also do so.

c) passive: a task’s state is changed due to any other task’s

operation (e.g. releasing a resource) or if its timeout for

waiting/sleeping has expired.

S4 Resources are non-preemptive. Once assigned, each owner

task is responsible for releasing its resources.

S5 If a task requests a currently free resource, it immediately

succeeds and remains running. Otherwise it transits to

waiting state. Waiting can be limited by specifying a

timeout. A task remains in waiting state until it receives

the resource or the timeout is reached. Then, depending

on the other tasks, it continues to ready or running state.

S6 Any task may allocate any resource several times and

must release it as often. Requests for already self-allocated

resources are granted immediately without suspension.
S7 Each task t ∈ T may wait for at most one single resource

αt ∈ R at the same time:

αt =

{

∅ if t awaits no resource

r ∈ R if t awaits r

S8 Several tasks Tr ( T may await the same resource r ∈ R
at the same time (due to S5, S6: Tr 6= T ):

Tr = {t ∈ T |αt = r} .

Figure 3. Examples for Resource-Await-Queues

S9 Each resource r ∈ R may be assigned to at most one
owner task σr ∈ T at the same time:

σr =

{

∅ if r is not assigned to any task

t ∈ T if r is assigned to t

S10 Each task t may exclusively hold several resources Rt ⊆ R
at the same time:

Rt = {r ∈ R|σr = t} .

Allocation and deallocation order of resources are arbitrary

and independent.

S11 If a task t releases a resource r ∈ Rt entirely, r will

directly be handed over to task u ∈ Tr with highest active

priority p(u). On equal priorities, the one which requested
r first will receive it and leave waiting state (→S3c).

In consequence to these specifications, dealing with deadlocks

will be required at runtime since the four Coffman conditions

[14] are fulfilled and deadlock prevention is not possible:

Mutual exclusion (by S9), hold and wait (by S7, S10), non-

preemptive resources (by S4), and circular waits (by S10).

B. Priority Inheritance and Deadlocks Occurrence

After disclosing the specifications, we’ll now define the

resource-await-queue (RAQ) as central data structure for our

resource management approach.

Definition: The resource-await-queue A(t) of a task t ∈ T is

an alternating list of tasks and resources for the representation

of currently existing task-resource dependencies (→Fig. 3):

A(t) :=




t, αt

︸︷︷︸

∈R

, σ(αt)
︸ ︷︷ ︸

=u∈T

, αu
︸︷︷︸

∈R

, σ(αu)
︸ ︷︷ ︸

=v∈T

, αv, σ(αv), ...






Thereby, two structural properties become obvious:

1) For each task t, A(t) is well-defined since

∀x∈A(t) : outdeg(x) ≤ 1 due to S7 and S9.

2) Two or more RAQs may converge (→Fig. 3b) since

∀x∈A(t) : indeg(x) ≥ 0 due to S8 and S10.

Further we show an important fact about RAQs:

Lemma 1: ∀t∈T : A(t) ends either in a task or in a cycle.

Proof: Assume A(t) ends with a resource r ∈ R. Then,
σr = ∅ and ∃u∈T αu = r. This means, that u would await r
even though r is free – a conflict to S5 and S11.

Lemma 1 directly leads to some observations:

1) If A(t) and A(u) contain at least one common element

x ∈ R ∪ T , they also contain at least one common task



v ∈ T . Finally, A(v) controls further execution of both t
and u. Within the example in Figure 3b, t1 . . . t6 depend

on A(t6) and finally on t7.
2) If A(t) does not end in a cycle, only its last task can be in

ready or running state. All others are currently waiting.

These observations are exactly the critical point when

dealing with resource management under real-time conditions.

The tail of a RAQ (cycles will be addressed later) always

prevents all other tasks therein from running because of at

least one certain resource. Until now, this was regarded entirely

independent from any task priorities. However, we actually

want all tasks to be scheduled close to their intended base

priorities but we also mentioned in Section IV, that this is

not always possible due to priority inversions. Therefore, we

adapt each task’s active priority to the resource situation:

Each task t ∈ T always receives at least the maximum

active priority of all tasks u 6= t it currently blocks (t ∈ A(u)).
Indeed, t blocks all tasks in A(u) and we want t to release its
resources quickly to grant a fast resumption of more important

tasks (→Fig. 4). Initially, we define

w(r) :=

{

0 if Tr = ∅ (indeg(r) = 0)

max {p(t)|t ∈ Tr} if Tr 6= ∅ (indeg(r) ≥ 1)
(1)

as the maximum active priority of all tasks t currently waiting
for resource r. Hence, the optimum active priority p(t) for a
task t has its lower bound limited by its allocated resources at

W (t) :=

{

0 if Rt = ∅ (indeg(t) = 0)

max {w(r)|r ∈ Rt} if Rt 6= ∅ (indeg(t) ≥ 1)
(2)

Furthermore, p(t) is always limited to the bottom by t’s own
base priority Pt. Finally, t’s active priority computes as

p(t) := max {Pt, W (t)} ≥ Pt. (3)

This does not only solve the priority selection for priority

inheritance but also leads to

Lemma 2: Each RAQ A(t) is always partially ordered by

active priorities and thus its tail has highest active priority.

Proof:

∀u,v∈A(t)∩T : ∃r∈A(t)∩R,αu=r,σr=v ⇒ u ∈ Tr, r ∈ Rv

⇒ p(v)
(Eq. 3)

≥ W (v)
(Eq. 2)

≥ w(r)
(Eq. 1)

≥ p(u)

Again, Figure 4 gives an example. For now, deadlocks still

require closer examination:

If A(t) contains a cycle C (→Fig. 3d), then:

1) C is a deadlock cycle, (→S5, ∀u∈C∩T : αv 6= ∅)
2) A(t) contains at least two tasks, (→S6)

3) A(t) contains no other cycle, (→S7)

4) C blocks all tasks in A(t), (→Lemma 1)

5) ∀u,v∈C∩T : p(u) = p(v). (→Lemma 2)

Let’s consider the consequences: By requesting a resource

r currently allocated by u = σr, a task t produces a deadlock
if it already holds another resource r′ ∈ A(u) (→Fig. 3c).

Then, A(u) and A(t) contain exactly the same elements. Thus,
deadlocks are first considered when a task requests a resource.

Figure 4. Example for Priority Inheritance and Dynamic Hinting

As requested in Section II, the formalization of our resource

management policy and the priority inheritance protocol sup-

ports arbitrary and independent resource (de)allocation orders

plus dynamic base priorities (→Section VI). Next we will

present our dynamic hinting approach for improving bounded

priority inversion, chained blocking and deadlock situations.

C. The Dynamic Hinting Approach

The central objective of dynamic hinting is to allow tasks the

collaborative sharing of exclusive resources while, at the same

time, it supports them to closely comply with their intended

base priorities. We already introduced the related problems in

compositional task systems but also motivated in Sections II,

IV why we accept and handle them dynamically at runtime.

Many conservative resource management systems try to

avoid deadlocks by simply refusing a resource request im-

mediately if it would cause an allocation cycle. Others accept

at least chained blocking and simply suspend the requester h
until it can be served. In our opinion, both methods are not

satisfying since exactly the just rejected or suspended task

h alone has to cope with the situation. This is especially

annoying if h is truly more important than at least one other

task t in the just averted cycle or extended chain. Then, this

results in a violation of base priorities (Pt < Ph). Furthermore,

resources are usually indispensable when requested and thus,

tasks tend to retry infinitely until the allocation succeeds. The

resulting (active) loops or long timeouts might not only block

other tasks but even worse, they simply shift the problem back

from system level to task level. Indeed, the task-resource-

dependencies and RAQ structures are highly dynamic and

depend on the system wide allocation order. Hence, another

task therein might react much better than h if it knew about

the situation. Unfortunately, tasks are commonly not aware

about their spurious influence and so the RAQs are commonly

reduced successively beginning at their very end (→Lemma

2). This is exactly where dynamic hinting applies.

Our approach provides runtime information for each task

about which resource it should release to improve the overall

system reactivity and liveliness. Considering these so called

hints is always optional for each task. But if followed, it def-

initely breaks a RAQ and reduces direct, chained or deadlock

blocking of at least one higher priority task (→Fig. 5).

Therefore, two preconditions must be fulfilled:

1) An ongoing resource allocation must never prevent any

task from requesting any resource. Otherwise, our ap-

proach lacks knowledge about the system requirements.

2) A spurious task must receive the time and opportunity to

react on a hint. In our case, PIP provides the priority and

the limited waiting of other tasks provides the time.



Figure 5. Dynamic Hinting Examples: a) Chain, b) Deadlock

The first step for determining hints is to identify the critical

resources for each task t. These currently define p(t) and

thus, they directly or indirectly cause the blocking of the most

important tasks in A(t) with base priority truly above Pt:

crit(t) :=

{

∅ if p(t) = Pt

{r ∈ Rt|w(r) = p(t)} if p(t) > Pt

(4)

According to Eq. 3, the presence of a critical resource for a
task t implies a raised active priority and vice versa:

crit(t) 6= ∅ ⇔ p(t) > Pt. (5)

Then, p(t) was raised by at least one pending resource request
of a task u with p(u) = p(t) > Pt. In turn, t can reduce the

blocking of at least one task by releasing any r ∈ crit(t). Yet,
our approach always selects the hint as follows (→Fig. 4, 5):

hint(t) := r ∈ crit(t), r was requested last. (6)

Then, if t releases its hint, this resource is directly passed

to its first requester (→S11), w.l.o.g u. Next, p(t) is updated
by Eq. 1-3 and u is scheduled promptly. This is true since

then u holds the highest priority of all tasks in ready state

and t did let u pass by (→S3b,c). As soon as t is scheduled
again, it can immediately re-request the just released resource

to continue its operation quickly. In any case, the untimely

release of a hint resolved a priority inversion and accounted

for the intended task base priorities.

The example in Figure 4 shows crit(t5) = {r2} since

p(t5) > Pt5 was defined by t4’s request for r2. Releasing

r2 would instantly relax p(t5) := Pt5 . Then t4 is served and

scheduled since it is indeed the task with highest priority but

currently blocked by t5. The allocation timeout t4 specified for
r2 grants t5 the time to cooperate as described. If t5 follows

its hint r2 prior to its regular release, it indeed improves the

bounded priority inversion toward t4. Furthermore, t5 also

improves the reactivity of t2 and t3 since these tasks are also

more relevant (Pt2 > Pt3 > Pt5) and will receive r2 right

after t4.

For better understanding of the implementation details in

Section VI and the integration with PIP, we’ll briefly address

the situations in which a hint must be updated (→Eq. 4, 6).

1) A new hint(t) evolves if another task u with p(u) > p(t)
requests any resource r ∈ Rt while p(t) = Pt.

2) An already existing hint(t) changes if another task u
with p(u) ≥ p(t) requests any resource r ∈ Rt while

p(t) > Pt. It also changes or even voids if another task’s

timeout for the hint is reached or if t releases it.

Two issues are obvious: First, hint(t) changes each time when
PIP updates p(t). Second, hint(t) often changes while t itself
is not running. However, it might become running then.

Thus, we’ll now describe the ways in which a task

may receive and handle its hints: First, an Explicit Query

(getHint(. . .)) can be done at distinct points in time or at code

positions where its handling would be possible at all. However,

by using this explicit method a task can never react as long as it

is in waiting state. Yet, this is exactly the case upon deadlocks

(→Fig. 5b) and during many long-term allocations, where

tasks e.g. stream data or wait for some events/interrupts while

holding a resource (→Section II). Beside this severe weakness,

the manual effort and code pollution would be immense.

We now introduce a much better strategy called Early

Wakeup. When enabled, all functions by which a task suspends

itself (→S3a) may return early upon a new or changed

hint. Then, a dedicated return value will indicate this special

situation. This way, coping with hints can be done instantly

and it is entirely limited to the cases when they really occur.

The use of early wakeup can be selected and tuned individually

by each task t and for each self-suspension. Therefore, we

extended the involved functions by an additional parameter ϕ:

int sleep(deadline | timeout, ϕ)
int waitEvent(event, deadline | timeout, ϕ)
int getResource(resource, deadline | timeout, ϕ)

Then, a self-suspending function will only return early if

ϕ 6= 0 ∧ p(t) > Pt ∧ p(t) ≥ ϕ (7)

i.e. if priority inheritance raised the caller’s priority p(t) to at
least the specified threshold ϕ. In particular, these functions

will also return right after calling if a hint is already available.

E.g. both new requests in Figure 5a,b will immediately

resume t2 if it has early wakeup enabled. Then, its request

for r2 is withdrawn. Otherwise, or if t2 then refuses to release
its hint r1 and simply requests r2 again, t3 may wake up

early. Obviously, a single cooperative task in a chain or cycle

is already sufficient to improve or recover from the situation.

Of course, priority thresholds are not the only useful metric

for deciding between cooperative or egoistic behavior. Thus,

beside the hinted resource r, we grant each task t access to
some further information: Its current (raised) priority p(t), a
flag indicating that a deadlock situation might persist if the

hint is not followed, and the absolute time at which the hint

r expires due to the latest request timeout:

Resource* getHint(Priority_t* p, boolean* DL, Time_t* TO);

The latter is of special interest for applying time-utility-

functions as proposed in [5]. These allow to relate the re-

maining allocation time to the still remaining timeout. E.g. the

timeout might suffice to still complete the current operation

or it might be that short that the required time for releasing

the hint would exceed it anyway.

Another option is to introduce a real-time priority threshold

by initially defining ϕ equal for all tasks. This inherently limits

the potential cooperativeness to situations where tasks (directly

or indirectly) block any real-time task tR with PtR
≥ ϕ.

We showed, that dynamic hinting can help to reduce re-

source allocation delays and even to recover from deadlocks.

By following hints from the resource manager, tasks can



collaborate implicitly without explicit knowledge of each

other. Yet, our approach gives no guarantee about that, but

depends on the behavior of the involved tasks. However,

a single cooperative task is already sufficient for effective

handling of these problems. When considering our demands

on the resource policy, a soft advise is a good chance to avoid

complex brute force recovery methods. Usage examples and

corresponding test bench results follow in Section VII.

VI. IMPLEMENTATION DETAILS

This section shows some central implementation details of

the just described techniques. Regarding the tight performance

and memory constraints of many embedded systems, resource

usage is limited to two central functions and timeout handling.

The related code is atomic and, since RAQs and task priorities

might get changed, always terminates by calling the scheduler.

The problem is how to efficiently select each task’s active

priority and dynamic hint simultaneously. Thus, let’s first

consider the situations in which p(t) might change at all:

1) p(t) might rise, if a task u 6= t requests a resource r ∈ Rt.

2) p(t) might fall, if t itself releases a resource r ∈ Rt or

if a task u 6= t waiting for a resource r′ ∈ Rt times out.

3) p(v) of several tasks v might change if any base priority

Pu is changed at runtime while v ∈ A(u). This is rather
simple and we’ll omit the details here.

Before heading to the functional details, we’ll consider

the computational complexities for w(r) and W (t): Since
the internal representation for each Tr is a priority queue,

retrieving w(r) is in O(1). In contrast, each Rt is a list and

thus W (t) is in O(indeg(t)).

1) Resource allocation: getResource(resource, timeout, ϕ):
This function either returns 1 (success), 0 (timeout) or -1

(hint). Here, two basic conditions must be considered:

a) If r is free (σr = ∅) or already allocated by t (σr =
t), the request succeeds immediately without suspending

t. Updating any priorities or dynamic hints is not required.
b) If r is occupied by σr 6= t, t is suspended and priority

management is done.

Case a) is obvious due to Lemma 1 and S6. In particular,

t is at most tail of other RAQs. So, the partial order of all

RAQs remains implicitly valid. Complexity: O(1).
For case b) p(t) remains unaffected but t’s state is changed

from running to waiting. Furthermore, αt := r and t is inserted
into Tr := Tr ∪ {t}. Thus, w(r)new ≥ w(r)old.

If w(r)new > p(σr), the partial order for A(t) is violated

and must be fixed by setting p(σr) := p(t). In this case,

hint(σr) := r is also updated since p(σr) is now limited by

r. Both changes might propagate over further task-resource-

dependencies and so we iterate over A(t) until a task u ∈ A(t)
with p(u) ≥ p(t) is found. Complexity: O(|A(t)|).
As we have seen in Section V-C, in case of early wakeup,

we already stop at the first task v for which Eq. 7 is true and

resume its execution. If v follows the hint, dynamic hinting was
successful. Otherwise v will restart the just aborted request and
by doing so, the hint will be passed to the next task in A(v).

2) Resource deallocation: releaseResource(resource):

Releasing a resource r is always initiated by its owner t = σr

(→S4). If t holds r several times, one is freed and no priority

adjustments are required. The same is true if t frees r entirely

while Tr = ∅ since then, p(t) was obviously not defined by r
(w(r) = 0). Complexity: O(1).
If Tr 6= ∅ and t releases r entirely, the resource is directly

handed over to a task v ∈ Tr with highest active priority

(→S11). Thus, σr := v, αv := ∅, Tr := Tr\{v} and finally

w(r)new ≤ w(r)old. Yet, p(v) ≤ p(t) still holds due to Lemma
2 and priority management remains to be done. First, p(v) of
the new owner remains unaffected. But if p(v) = p(t), p(v)
might have defined p(t) in the past and thus p(t) and hint(t)
might need an update according to Eq. 3-6. As desired, Pt ≤
p(t)new ≤ p(t)old finally holds. Complexity: O(indeg(t)).

3) Timeouts: If a task t’s request for a resource r = αt

times out, we have to check and possibly update the priorities

and hints for several tasks in A(t). Indeed, ∃!v∈A(t) : v = σr

(→Lemma 1) and p(t) ≤ p(v) (→Lemma 2).

If p(t) < p(v), t and v are neither on a common cycle nor

was p(v) defined by p(t). Hence, neither p(v) nor hint(v)
need updates and we are done in O(1). If p(t) = p(v), p(v) is
currently limited at least by p(t). In this case, all tasks in A(v)
need to be checked and updated iteratively by Eq. 3-6 until

the partial order is satisfied again in O(|A(v)|) = O(|A(σr)|).

VII. REAL-WORLD APPLICATIONS AND TEST BEDS

For analyzing our approach of combining temporally limited

resource requests, the priority inheritance protocol and dy-

namic hinting, we extended the SmartOS kernel as described.

The implementation was done for Texas Instrument’s MSP430

[16] family of microprocessors, since these are found on a

large variety of sensor nodes like e.g. TelosB [17]. Requiring

4 kB of ROM and 150 B of RAM for the whole kernel, the

typically low computational performance and small memory of

sensor nodes was considered carefully to leave sufficient room

for the actual application. Our test scenarios were executed

on boards with an MSP430F1611 MCU running at 8 MHz.
For detailed performance analysis at runtime, we used the

integrated SmartOS timeline with a resolution of 1 µs.

A. Test Bed I - Continuous Data Streaming

Our first test bed considers a problem we had in one of our

real WSAN control applications. It addresses a quite frequently

encountered situation: A task S is used to continuously transfer

some data over a shared bus b to an external device. The stream
is rather long (or even infinite) but could be suspended and

resumed at any time for more important communication over

the same bus. Then however, it always needs some bus setup

plus a complex header/trailer for proper initiation/termination.

During the transfer, S obviously needs exclusive access to b.
A common solution is to split the stream payload into

atomic packets. Then, S would terminate the stream and

release the bus temporarily after each packet. This way other

tasks may receive the bus regularly. However, since S does

not really know if it currently blocks a more relevant task, the



temporary stream interruption and release of b might be com-
pletely unnecessary. It is also obvious that the selected packet

length has significant influence on the extent of potentially

resulting bounded priority inversions as declared in Section

IV. By using short (long) packets, the overhead increases (de-

creases) while improving (degrading) the reactivity of higher

prioritized tasks when these request b. In fact, a fixed value is
often selected during development with regard to the individual

application requirements. These must be known exactly, then.

Using a server task for coordinating the bus access might

even result in slightly worse performance due to client-server

communication overhead. The mentioned problems remain the

same but are concentrated at the server which also commonly

creates atomic packets or grants exclusive bus reservations.

Finally, dynamic hinting provides two improvements. Since

our approach knows about pending bus requests, S could

query its current blocking state periodically and react only if

necessary. This time the query interval must still be selected

carefully but the overhead for useless stream interruption is

already avoided! The additional use of early wakeup even

provides the desired reactivity as it hints S instantly if it blocks

a task with truly higher base priority. Therefore, this option

must simply be enabled for the delay/suspension between two

subsequent transmissions of data words.

For the concrete application we had to stream 8 bit ADC

data sampled at 10 kHz over an SPI bus. The overhead for each
header and trailer was 1 byte. Beside, a radio transceiver R

and a motor controller M shared the same SPI bus (at different

settings) for short communication. Yet, both associated tasks

R, M had to process sporadic events (av. inter-arrival time:

≈5 ms) and were much more time and safety critical since

especially failures in the motor control were disastrous. So,

we defined PS < ϕ = 100 < PR < PM . To further reduce

the CPU load we used a DMA channel for sending the ADC

values continuously to the bus controller. Thus, the streaming

task S simply had to allocate and configure the bus resource

for a new stream. After starting the DMA transfer, S did sleep

until an event signaled to finalize the stream or a hint occurred.

The following example code shows the relevant implementa-

tion details for S when using early wakeup:

1 void streamData() { // executed in context of task S

int stop = 0;
3 /* start stream */

getResource(&SPI, INFINITE, 0);
5 cfgBus(); header(); startDMA();

while (stop != 1) { // 1 indicates stop event

7 /* Wait infinitely for the stopStream event.

Enable early wakeup if raised >= ϕ = 100. */

9 stop = waitEvent(&stopStream, INFINITE, ϕ);
if (stop == -1) { // hint received!

11 Resource_t *hint = getHint(NULL, NULL, NULL);
if (hint == &SPI) { // conditional hint handling

13 /* stop stream and release resource quickly */

stopDMA(); trailer(); releaseResource(hint);
15 /* --- THE TASK WILL BE SUSPENDED HERE SINCE AT ---

--- LEAST ONE OTHER TASK WAITS FOR THE HINT ---- */

17 /* continue stream as soon as possible */

getResource(hint, INFINITE, 0);
19 cfgBus(); header(); startDMA(); } } }

/* stop stream */

21 stopDMA(); trailer(); releaseResource(&SPI);
}

Figure 6. Streamtest: Packet Oriented (AP) vs. Dynamic Hinting (EQ/EW)

In fact, the code is very similar when not using a DMA

but sending the data words directly. Then, the DMA related

functions can be removed and line 9 can be replaced by e.g.

send(nextDataWord);
stop=sleep(100, ϕ); // delay 100µs, early wakeup if p ≥ ϕ

Streaming data while simultaneously running some sporadic

but highly reactive tasks might already cause extreme system

load for low performance embedded systems like sensor nodes.

Yet, our testbed results show, that our approach can still

gain good reactivity and high throughput without manual task

tuning. First, we implemented the application with atomic

fixed-length packets (AP), then we used dynamic hinting with

explicit querying (EQ) and finally we activated early wakeup

(EW). Figure 6 shows the results in terms of the average

blocking delay τ of the real-time tasks and the achieved

payload data rate ρ of the streaming task. Due to the fixed

trailer length and sampling rate, the best case blocking delay

τbc=100 µs and the best case payload data rate ρbc=10 kB/s.
As expected for the packet oriented design, its throughput

ρAP improves while the blocking delay τAP degrades rapidly

with increasing packet length. When using dynamic hinting

with periodic explicit querying, ρEQ remains nearly constant

and close to the achievable maximum ρbc. However, the block-

ing delay τEQ almost matches τAP and is also not satisfying

for long periods. Finally, when using early wakeup, the data

rate is still held high and additionally the blocking delay is

kept extremely low. Indeed, ρEW ≈ ρbc and τEW ≈ τbc. For

better comparability, ρEW and τEW are visible as horizontal

lines in Figure 6. Yet, early wakeup is independent from any

block length or query period.

This stream test showed practical results from a common

and realistic application scenario. However, only few tasks and

one shared resource were involved.

B. Test Bed II - Dining Philosophers Stress Test

The next step is a tough stress test comprising many tasks,

resources and deadlock pitfalls. Though being more synthetic,

the resulting test application still considers real world demands

and allows a deep analysis of our approach under extreme

conditions. Inspired by the well-known dining philosophers

problem, where philosophers (tasks) over and over compete for

cutlery (resources) that would allow them to eat, we modified

the scenario to be more complex.



Figure 7. The Dining Philosophers Problem: 1D, 2D, The Lunch Cycle

First, we extended the classic one dimensional problem to

two and three dimensions. As Figures 7a,b show, this causes

more extensive task-resource-dependencies and boosts compe-

tition between the philosophers as well as the overall system

load. For m philosopher tasks P0,...,m−1 in an n-dimensional
setup the system will contain |R| = n ·m resources and each

task requires 2 ·n resources for eating. Then, each one directly

bars its 2 ·n neighbors from also doing so since it blocks at

least one of their shared resources. Finally, the number of

potential allocation cycles (deadlocks) increases significantly

along with the dimension and task count.

At the individual start time t of each philosopher’s period

(→Fig. 7c), the corresponding task tries to quickly allocate its

required resources. The entire allocation attempt is temporally

limited to tTO. If the timeout tTO is reached, the philosopher

gives up, releases all resources it allocated so far and restarts

its lunch cycle. On success, the allocation delay tA is logged.

Then the task consumes some fixed time tE for eating and

finally releases its resources before thinking for a fixed time tT .
The relationship to real-world embedded applications are tasks

executing repeated actions for which they require the CPU and

some exclusive resources with a certain period stability.

Again, the most interesting point is the applied resource

allocation concept. Similar to common application logic, each

philosopher requests its resources in a fixed order. Therefore,

it specifies the same absolute timeout t + tTO for each part r
of the cutlery while considering early wakeup as follows:

allocationResult = getResource(r, t + tT O, ϕ);

For our analysis, we applied dynamic hinting in different ways:

1. PIP: We disabled the hints completely (ϕ = 0) to study the
performance of the pure priority inheritance protocol.

2. PIP+DH: The philosophers were always cooperative and

released each hinted resource on demand (ϕ = 1).
3. PIP+DH+TUF: We applied a time-utility-function [5] for

dynamic runtime decision as follows: For each required re-

source an average allocation timeout tT O

2n
can be accepted.

Thus, whenever a philosopher received a hint it checked

if the remaining timeout was sufficient to allocate its still

required resources R′ in average case. If tTO,remain >
|R′| · tT O

2n
the hint was followed, otherwise it was ignored.

Still, ϕ = 1 was specified.

During hint re-allocation in both 2. and 3., further hints were

considered in the same way, respectively. In summary, we

implemented each philosopher to potentially set back its entire

meal for other more important tasks. But as soon it has started

eating, it won’t stop for anybody else. It’s just the same in

many real applications: a complex process might be deferred

in time for the benefit of a more important task. But when in

progress once, it is commonly not aborted.

For each of the three presented methods, we inspected all 48
test bed setups from the following configuration space:

• Tasks / Dimensions: m ∈ {41, 91, 161, 22, 32, 42, 23, 33}
⇒ Resources: |R| ∈ {4, 9, 16, 8, 18, 32, 24, 81}

• Resource allocation timeouts [ms]: tTO ∈ {500, 1000,∞}
• Eat and think duration [ms]: tE , tT ∈ {500, 1000}

Essentially, the resulting basic characteristics were the same

for any value of m. Hence, we’ll just present a small but

representative selection for m = 42 = 16 philosophers.

Obviously, a thinking philosopher allows each of its neigh-

bors to eat. Thus, χ = tE

tT
is an indicator for the average

system load. For χ = 1, the tasks might perfectly interleave

their eat/think processes. However, due to various overhead

(e.g. context switches, etc.), this is never visible in a real

run. Instead, the whole system already faces a slight overload

condition, then. This overload even increases with χ > 1 and

turns into underload for χ < 1.
As first metric for the achieved performance, we counted

the number of each philosopher’s successful lunch cycles l
in relation to the possible maximum lmax = ttestbench

tA+tE+tT
with

tA = 0. Second, we considered the average allocation delay

tA,av in relation to its maximum tTO. As third metric we

counted the number of deadlock situations during each run.

Figures 8a,b show the results (average over 10 runs à 20

min.) for philosophers with increasing base priorities PPi
=

1+i and common values for tTO = tE = tT = 500 ms. Since
χ = 1, a lunch count close to 100% might be possible.

Using the pure priority inheritance protocol already supports

the increasing task priorities as expected (→Fig. 8a). However,

the values exhibit a clear jitter and the average lunch cycles

for all tasks settled at ≈ 47%. The jitter is even worse for the

allocation delay tA,av in Figure 8b. In almost all of our setups

this phenomenon occurred when using PIP only. Obviously,

the high variance arises from the tasks’ missing knowledge

about each others requirements. The same is true for the

system wide deadlock count which reached an average of

≈161 per minute.

Using cooperative resource sharing by means of dynamic

hinting instantly improved all results while obeying the

philosophers’ base priorities even better. First, when following

each hint, deadlocks are obviously avoided entirely (→Section

V-C). Beyond, the average lunch count increased to ≈ 79% at

signifantly less jitter. This is especially true for the allocation

delays tA,av which are more stable around 16% of tTO.

Finally, by using the TUF described above, we observed

additional improvements in most setups. Now, the philoso-

phers are only cooperative if they can afford it. Let’s consider

the consequences: Along with falling priority, tasks tend to

receive more hints and less CPU time. Thus, they also tend to

get ever closer to their allocation timeout tTO and behave

more egoistic when short in time. This results in a slight

reduction of lunch counts for high priority philosophers but

significantly increases the lunch count for the low prioritized

ones. Due to the selective cooperativeness, the number of



Figure 8. Dining Philosophers Test Bed Results

deadlock situations might also rise again. In our testbed we

counted ≈ 2 deadlocks per minute indeed, but nevertheless

improved the overall lunch count to ≈ 85% of the potential

maximum (→Fig. 8a). The allocation delays tA,av were also

reduced further and stabilized even better (→Fig. 8b).

Unfortunately, for massive underload/overload setups, the

TUF yielded only slight improvements of the lunch count

compared to the PIP+DH method. Then, the load was either

manageable anyway or it was simply too extreme. However,

in any setups, dynamic hinting was always significantly better

than pure PIP. Especially when using tTO = ∞, the pure PIP

always got stuck in deadlocks while our approach recovered

reliably and still achieved good results.

VIII. CONCLUSION AND OUTLOOK

In this paper, we introduced the dynamic hinting approach

for cooperative resource sharing among preemptive tasks in

reactive systems. We showed, that dynamic hinting in com-

bination with priority inheritance and temporally bounded

resource requests can help to improve and stabilize the overall

system performance. Therefore, our concept helps to reduce

resource allocation delays and to recover from deadlocks at

runtime. In particular, the individual task base priorities are

considered carefully to keep each task’s performance close

to its intended relevance. The idea is to analyze emerging

task-resource dependencies at runtime and to provide spurious

tasks with information about how they could increase the

reactivity of more relevant tasks. Nevertheless, our approach

allows each task to dynamically decide between cooperative

or egoistic behavior with respect to its current conditions

and other tasks’ requirements. By following the hints from

the resource manager, tasks can collaborate implicitly without

explicit knowledge of each other. However, our approach can

not guarantee any time limits since these highly depend on the

behavior of the involved tasks. Yet, even if used sparsely, it is

always equal or better compared to non-cooperative operation.

Our test beds and the integration of all presented concepts

into SmartOS showed, that the effective use of prioritized

tasks for creating reactive systems is even possible on small

embedded devices like sensor nodes. Of course, a well-thought

application design still remains elementary, but compositional

software design is already facilitated. In general, our approach

is not necessarily limited to sensor/actor networking but may

also extend other embedded systems in general.

At present we are working on more sophisticated concepts

for adjusting the acceptance of hints to the task and system

situation. In particular, we want to improve the hint selection

and the application of TUFs. Also, we plan to evaluate the

use of dynamic hinting for remote resource management in

distributed systems. Concerning real-world applications, we

just integrated our approach into a WSAN based indoor

localization and car control system where we achieved a

considerably higher localization frequency and path precision.

Another focus is the application of software model checking

on systems using our new approach under SmartOS.
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Sensornetzwerke. RWTH Aachen University, 16.–17. Jul. 2007.

[16] MSP430x1xx Family User’s Guide, Texas Instruments Inc., 2006.
[17] J. Polastre, R. Szewczyk, and D. Culler, “Telos: Enabling Ultra-Low

Power Wireless Research,” in Proceedings of the Fourth International
Conference on Information Processing in Sensor Networks, 2005.


