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Abstract

Today’s embedded system designs demand for an ever
increasing integration density of various services on com-
mon platforms. Especially within highly dynamic environ-
ments where severe real-time demands must be met, shar-
ing exclusive resources among these concurrently running
subsystems is a hard compositional problem. Classic ap-
proaches suffer from the fact that tasks or cores are not
aware about their mutual influences and existing resource
conflicts, and thus cannot collaborate efficiently in critical
situations. We eliminate this flaw, and present the novel
DynamicHinting method for sharing exclusive resources
on-demand among prioritized tasks on both common and
different cores: Hints will be issued by the resource man-
ager(s) to indicate e.g. priority inversions, and to provide
blocking tasks with the time, knowledge, and CPU power
to resolve the conflicts in time.

1. Introduction

The still increasing pervasiveness and ubiquity of to-
day’s embedded devices comes along with rapidly in-
creasing demands on the underlying hardware, software,
and networking subsystems. Driven by strong market
pulls various (emerging) technologies will continue to
draw our special research attention regarding quite com-
mon and quite diverse requirements: While Gartner [9]
just identified e.g. location based services and augmented
reality as "highly beneficial” throughout the next decade,
autonomous vehicles and mobile robotics are even more
long-termed but considered to be “’transformational” then.

In our opinion, turning the associated expectations into
reality demands for a symbiotic research in two main di-
rections: Wireless Sensor Networks (WSN) and Embed-
ded Control Systems (ECS). The first rely on rather re-
source constrained but cheap and autonomously operating
devices: Deployed in arbitrary numbers they take the part
of remotely monitoring and interconnecting the environ-
ment as well as the participating systems through sensors
and robust communication concepts. The latter, in turn,
make use of significantly more powerful and application-

tailored hardware to finally interact with the environment
through various types of actuators and adaptive control al-
gorithms.

The distinct challenges thus relate to optimizing en-
ergy consumption, service coverage, or sensor data ag-
gregation for the WSN domain, and to safety, security, or
computational power for the ECS domain. The common
challenges, however, result from the highly dynamic en-
vironments in which these distributed or even (partially)
mobile systems are intended to operate: Periodic as well
as sporadic events demand for a high reactivity to reflect
both soft and hard real-time constraints. Especially in
the medical, military, and avionics sector, their violation
might not only lead to simple system failures or qual-
ity degradations, but also to severe consequences for hu-
mans and equipment. Further enforced through the de-
mand for compositionality and modularity regarding vari-
ous co-existing services and software subsystems on a sin-
gle platform, the most central problem can in general be
identified as a resource sharing issue among concurrently
running “jobs” with time-critical objectives. This is ex-
actly where DynamicHinting applies.

2. Related work: Integration and isolation

While a reasonable system design is always required
first, various solution approaches exist to counteract the
just mentioned compositionality problem at various im-
plementation levels: On the software side, these strategies
often rely on preemptive operating systems to integrate
prioritized tasks, and to support dynamic resource sharing
at runtime. The developers (and the tasks, respectively)
are commonly aware of the fact that they have to share e.g.
the CPU and other operational resources, and thus make
use of e.g. static preemption points [6, 19] or dynamic pri-
ority inheritance strategies [16] to reduce priority inver-
sions [20] or to avoid/prevent deadlocks. In contrast, vir-
tualization and hypervisor techniques attempt to largely
isolate simultaneously hosted (operating) systems through
static resource assignments [8, 10]. At best, the hosted
guest systems do not even know about each other then.
Unfortunately, the aim for “true independence” is not al-
ways attainable if sharing truly unique resources (like e.g.
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memory, IRQ controllers, peripheral buses, etc.) cannot
be avoided. Thus, partitioning techniques like [14] pe-
riodically reassign sets of resources to task groups. The
so called paravirtualization even partially revokes the idea
of a strict isolation, and puts some concurrency awareness
into specifically adapted kernels [5, 17]. However, sharing
resources among them remains hard in general, and only a
few (and mostly commercial) concepts exist [12, 18, 15].
This is especially true for hard real-time operation where a
far-reaching or even strict isolation is often a prerequisite
for the certification of mission critical systems [1].

Regarding most hypervisor architectures, well-known
concepts from traditional OS resource managers can often
be found adapted at the virtualization level: For instance,
explicit resource requests can be passed through the kernel
using so called hypercalls to drivers which reside within
the hypervisor. Another strategy lets one server task or
hosted guest OS acquire a particular resource exclusively
to provide corresponding services. At runtime, these will
be accessed through unified communication channels, like
e.g. shared memory or virtual ethernet. Apart from the
management overhead and the indeterministic response
times for both techniques, task or service request priorities
commonly have no meaning across the guests’ borders,
and even non-detectable priority inversions might eventu-
ally occur. For multicore architectures, these might even
evolve and persist across the cores.

3. Scope of this work

With regard to the real-time demands in open architec-
tures with both time-critical and non-time-critical subsys-
tems, we present an entirely novel collaboration concept
for sharing exclusive resources among tasks and cores in
multi-tasking and multi-core environments. The central
idea behind our approach combines time-awareness and
situation-awareness to express (unavoidable) resource de-
pendencies, and to resolve related conflicts on-demand.
Additional contracts among the tasks or cores ensure
worst case allocation times (WCAT) where required:

In short, low priority tasks get notified through so
called hints as soon as they block at least one task with
higher priority. While these tasks might even reside on
separate cores and within separate OS instances, specific
time-utility-functions (TUF) [13] can then be applied by
the blocking task to decide from existing contracts and
other application specific parameters about whether to ig-
nore the hint or to collaborate by releasing the resource in
question prematurely. In any case, (except for the CPU on
each individual core) resources will never be withdrawn,
but must always be released voluntarily by their current
owner tasks.

With respect to the consequently required hardware/-
software co-design, the scope of this contribution is
twofold:

1. Regarding the purely software based integration of
concurrently running code on a single core, we will
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Figure 1: The SmartOS task states

first present the embedded real-time operating sys-
tem SmartOS in Section 4. In combination with the
central DynamicHinting concept from Section 5 its
special focus aims on providing a unified temporal
semantics and a resource related dependency aware-
ness for fully preemptive and prioritized tasks.

2. Regarding the hardware-assisted virtualization of
such exclusive resources among multiple OS in-
stances on several cores, an additional hardware
component is proposed in Section 6 to natively ex-
tend our collaboration concept: Designed as a central
resource manager, it forwards the resource related
dependency awareness between the cores to carefully
breach their initially strict isolation just where and
only when really required.

In the remainder of this paper, we consistently present
the technical concepts for generating and receiving hints
in hardware and software. In particular, we will also dis-
cuss the impact on the application design and implementa-
tion, and show some selected real-world test bench results.

4. The SmartOS operating system

Since the theoretical and algorithmic background on
SmartOS has already been introduced in [3], this section
will just provide a brief introduction on the most cen-
tral kernel concepts (i.e., time, tasks, events, mutexes,
semaphores, exceptions, and IRQ handlers):

Designed for both small MCUs (WSN domain) and
full-grown CPUs (ECS domain), SmartOS features a hy-
brid exo/micro kernel architecture, and incorporates sev-
eral advantages of both classes. While it supports arbitrary
resource allocations (exo), it provides native abstractions
only for a small set of system components (micro). Most
drivers must thus be provided by the application.

Each application is organized as a system of concur-
rently running and fully preemptive tasks with individ-
ual stack areas and dynamic base priorities. Accord-
ing to Figure 1 these tasks always transit between three
states: running (i.e., executed), waiting (i.e., suspended),
and ready (i.e., preempted), with ready being the initial
state. Atomic sections are intentionally not allowed for
their unpredictable duration. Though the tasks are initially



independent from each other, they may develop dynamic
dependencies at runtime (e.g. through resource sharing or
inter-task-communication): With respect to these depen-
dencies the scheduler consequently provides various syn-
chronization primitives and also maintains a dynamic ac-
tive priority for each task: The tasks with highest active
priority in ready state will be selected for execution in ei-
ther round-robin or cooperative manner.

Explicit inter-task communication and environmental
interaction is provided via so called events which can be
invoked by the tasks and by application specific IRQ han-
dlers. While the initial interrupt acceptance is always cen-
tralized at the kernel level, their actual handling is com-
monly requested through events and accomplished at task
level.!

Inter-task synchronization is provided through so
called mutexes and semaphores: While mutexes are avail-
able to protect code sequences from interleaved execution
(critical sections), semaphores coordinate the dynamic
access to temporally shared but exclusively assigned re-
sources. Once assigned, these will never be withdrawn
from a task, but must always be released voluntarily. The
resource manager supports physical resources (e.g. buses)
as well as abstract resources (e.g. data structures) under
both long-term and short-term allocation. In the scope
of reactive embedded systems we consider both types to
be indispensable for the operation in highly dynamic en-
vironments: Long-term allocations allow tasks to sus-
pend themselves while holding a resource (e.g. allocate a
transceiver and wait for a related IRQ). In contrast, short-
term allocations will operate on resources without inter-
mediate self-suspension (e.g. lock a data structure just
for immediate processing). In any case, the SmartOS re-
source manager coordinates pending allocation requests
with respect to each involved task’s priority, and applies
modified priority inheritance protocols (PIP and PCP) for
collaborative resource sharing as described next within
this paper.”

Another considerable concept in the domain of embed-
ded operating systems is the native support for task spe-
cific exception handling. This allows reacting on unfore-
seeable system conditions, and to separate the program
logic from the error handling. In the tradition of higher
level languages, the kernel API allows emulating the typ-
ical try/catch structure as shown in Listing 3 at the cost
of some task stack for saving its state at the beginning of
each (nested) try block. In the special context of collab-
orative resource sharing we’ll also see these exceptions
useful for synchronizing the resolution of asynchronously
emerging resource conflicts to the execution flow of the
blocking task in Section 5.

Finally, time and time-awareness is another inherent

lThough not discussed here, this unification provides a deterministic
handling latency.

2True resource access protection is initially not available due to miss-
ing hardware assistance on most supported COTS microcontrollers (like
e.g. TI MSP430, Renesas SuperH, Atmel AVR).

design concept in SmartOS, and the most central founda-
tion of any application software: Apart from a local sys-
tem time with a unified resolution of 1 us the kernel pro-
vides a highly precise IRQ timestamping mechanism with
a symmetric precision interval around the actual IRQ trig-
ger. The API’s temporal semantic forwards the notion of
time to the application tasks, and provides non-blocking
versions of all kernel functions which might not complete
immediately: Sleeping is equally supported as the specifi-
cation of absolute deadlines or relative timeouts for wait-
ing on events or for bounding resource requests.

From the operating system’s point of view each appli-
cation’s reactivity initially relies on best effort schedul-
ing with respect to the task priorities. Since real-time
violations can always be traced back to (unresolved) re-
source sharing conflicts, additional reactivity demands can
be specified at application level (contracts), and will reli-
ably be satisfied by limiting the worst case allocation time
of resources via DynamicHinting (collaboration). As an
extensive example, the special use case of dynamic mem-
ory management under hard real-time conditions can be
found in [4].

5. Collaborative resource sharing among
tasks

Starting with the software integration, this section
presents the SmartOS hint generation and hint passing
policy within a single kernel instance, and introduces a
novel way to handle the indicated resource conflicts effi-
ciently with respect to the current task and system situa-
tion. From the various compositional challenges we will
just address the problem of deadlocks (where required)
and bounded or unbounded priority inversion: Here, a
low priority task blocks the execution of a higher priority
task through a lasting resource allocation which cannot be
withdrawn.?

Classic approaches to solve this problem comprise e.g.
HLP (highest locker protocol), PCP (priority ceiling pro-
tocol), PIP (priority inheritance protocol) [16, 7], or SRP
(stack resource policy) [2]: While these either implicitly
or explicitly raise the priority of every blocking task to at
least the highest priority of the tasks it currently blocks,
the inherent flaw of this common strategy is, that the tasks
will not realize their own impact on the remaining sys-
tem! Thus, no concept is able to resolve bounded priority
inversion, which can be a true killer scenario for any time
critical but currently not grantable resource request. Be-
yond, each concept also has its specific weakness:

For its relatively simple implementation overhead and
deadlock avoidance capability, HLP is often found in ef-
fectively used operating systems. However, it does not
only lack the ability to interleave equal priority tasks, but

3In 1997, the Mars Pathfinder mission had almost failed because of
such a priority inversion on an inappropriately shared data bus [11].
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Figure 2: A delayed resource allocation, and related task/kernel interactions

also prohibits self-suspensions during lasting resource al-
locations. Thus it “blocks on preemption” and the result-
ing “inheritance related starvation” of lower priority tasks
renders it unsuitable for long-term allocations.

Within the more elaborate PCP a lasting allocation by
a task does not starve lower priority tasks. The policy
“blocks on request”, but applies a very restrictive resource
assignment policy to maintain a so called “safe state” for
deadlock avoidance. Though quite desirable, this feature
also renders the approach unsuitable for long-term alloca-
tions, since these are likely to immediately result in the
“avoidance related rejection” of further requests even for
currently free resources. For the same effect SRP is also
not suitable for long-term allocations, since its specific
stack sharing feature would be corrupted then. PIP is more
generous in general, and it will never reject requests for
currently free resources. Thus, it is the most appropriate
candidate for long-term allocations. However, as a consid-
erable drawback, it suffers from so called “chain block-
ing”, and even deadlocks might occur. Yet, both prob-
lems will be solved by DynamicHinting as addressed in
[3]. Further considerations as well as a discussion of more
synchronization alternatives can also be found there.

In contrast to these classic techniques, our novel
collaboration concept establishes an additional conflict-
awareness at task level to let even intrinsically exclusive
resources become preemptive on-demand. In compliance
with the exokernel philosophy, the central contribution of
DynamicHinting is to provide tasks with direct access to
exclusive but temporally shared resources. In terms of
the allocation latency, it therefore aims on closely reflect-
ing their base priorities as defined by the developer or as
adapted at runtime. However, just indicated by the re-
source manager, the ultimate decision between resolving
a dynamically emerging resource conflict either immedi-
ately, with some tolerable delay, or not at all, is shifted
from OS level to task level (or from hardware level to OS
level in Section 6). Though the resource manager detects
the conflicts first, the reason for this intentional reloca-
tion of competencies is, that the current resource owner
has the most complete knowledge about the consequences
of an early release and about how to terminate a resource

properly (i.e., with the fewest side-effects). Eventually,
such an early release and on-demand handover can sig-
nificantly reduce bounded priority inversions and resolve
deadlocks. Finally, keeping the allocation delays roughly
proportional to the task base priorities means an entirely
new improvement for time-critical open systems which do
not withdraw (temporally exclusive) resources by force.

5.1. Usage and example scenario

Exemplified by an initially not satisfiable resource re-
quest, Figure 2 shows some typical task/kernel interac-
tions within our collaborative concept to still provide the
allocation in time: First, the high priority task ¢5 requests
a resource R from the resource manager (@). Unfortu-
nately the request cannot be served immediately due to
the lasting allocation of R by another task ¢;. However,
since to bounded the request by the specification of an
absolute deadline Apy it initially remains blocked in sus-
pended/waiting state. Meanwhile, the resource manager
identified the blocking task #; with a lower active priority
p(t1) < p(t2). Within our example the applied priority
inheritance policy will immediately raise ¢;’s active prior-
ity to p(t1) := p(t2). Next, t; will be resumed to running
state, and receives a hint (@) which indicates its disturbing
influence on the system.

Since according to the SmartOS specifications re-
sources are always exclusive and non-preemptive, only #;
itself is authorized to instruct or perform modifications to
its allocated resource R. Being aware of the resource con-
flict, the received hint is evaluated by ¢, and possibly trig-
gers a self-controlled release of R (®). Most important,
this will commonly include an appropriate finalization of
the resource usage: A shared bus for example might re-
quire the proper termination of a currently running stream
as well as the deactivation of an autonomously operating
on-chip peripheral (e.g. a DMA controller) which would
otherwise continue to transmit data over the already re-
leased bus. Under guidance of the resource manager, the
entire operation finally leads to a resource handover which
allows to serve and unblock 5 (@). Of course, ¢1’s prior-
ity will also be adapted (i.e., reduced) again according to
the applied priority inheritance method. Regarding poten-



(T, 200, 100); // stack size = 200 words

// base priority = 100
(T) {

Exception_t e;

1
2
3
4
5 /+ prepare for catching an exception x/
6
7
8 /* lock a resource in a long-term allocation */
9 getResource (&R);

11 /* use the resource infinitely unless another
12 task demands for it =/

13 while (1) {

15 TRY { // prepare to react on hints

16 ADCFunction(); // throws EX_EW directly

17 DSPFunction(); // throws EX_HH via hint handler

18 .
19 } CATCH (e) { // synchronize on hints <&==sr=s=s-ss
20 switch (e) { // exception specific code ... :
21 case EX_HH: // ... for finalizing ...

22 case EX_EW: // ... the resource usage

23 }

24 releaseResource (&R); // collaborate

25 /% THE TASK T WILL DEFINITELY BE PREEMPTED HERE SINCE

26 THE RESOURCE R WILL BE HANDED OVER TO SERVE AND

27 RESUME A STILL BLOCKED TASK WITH HIGHER PRIORITY =/

28 getResource (&R) ; // re-—-allocate ASAP

29 }

/* A hint handler which can be injected into a
task execution flow =/
(HH) {
/+ conditional collaboration (contract based) =/
Resource_t xhint = getHint();
if ( TUF (hint, contract) == COLLABORATE ) {
""" THROW EX_HH;

/* Some CPU intense function which can
nevertheless be interrupted by a hint x/

void DSPFunction() {
setDHH (&HH, ¢);
someHighCPULoad () ;
setDHH (NULL) ;

}

// enable hint handler

// disable hint handler

/* Some ADC sampling function.
Sleeps for 10ms between the samples,
but can wake up early for hints x/
void ADCFunction() {
while (someCondition) {
sampleSensorData() ;
if (sleep(10000, ¢) == HINT) {
/% unconditional collaboration (always) x/
----- THROW EX_EW;

(a) A task T" with hint handling capability

(b) Hint reception and synchronization via exceptions

Figure 3: Using SmartOS exceptions to synchronize on dynamic hints

tial real-time constraints for ¢, a previously defined con-
tract might have engaged ¢; to react on the hint before ¢5’s
allocation deadline has been reached.

5.2. Receiving and processing hints

As we have just seen from the example, the combi-
nation of temporally bounded resource requests, dynamic
hints, optional contracts, and the priority inheritance pro-
tocol provides a blocking task with the necessary time,
knowledge, objective, and CPU power to resolve the situ-
ation in the most appropriate way.* However, apart from
this conceptional point of view, the technical realization
bears some problems: Since hints can possibly emerge
during each resource request of a currently running task, a
potential blocker task can then itself be in either ready or
waiting state (see Figure 1). If the blocker is even executed
on another core, it can also be in running state then. From
the blocker’s point of view, and comparable to interrupts,
hints must thus be passed and processed asynchronously.
While DynamicHinting supports three techniques to no-
tify a SmartOS task, the impact on the actual task imple-
mentation depends on the application design, but can be
unified and synchronized through exceptions.

For a comprehensive introduction of the three hint no-
tification and reception strategies we refer to Listing 3:

1. Explicit querying allows a task to explicitly and in-

“Though PCP would in general be compatible with our collaboration
concept, we recommend to combine it with PIP due to its better support
for long-term allocations.

tentionally poll the resource manager for a persisting
resource conflict. While this option is rather incon-
venient to apply, it is likely to pollute the code, and it
generates high CPU load if a high reactivity on hints
must be ensured. In fact, it is only recommended to
query the actual hint in case the task is already aware
of its spurious influence (— Line 37).

Early wakeup will resume a blocking task in waiting
state early. Related functions like e.g. sleep, getRe-
source, or waitEvent provide a special return value
to distinguish between success, failure, or hint. Be-
sides, they allow the specification of a priority thresh-
old ¢, and will only accept a hint in case the blocked
task has equal or higher priority (— Line 59). While
periodic polling is avoided entirely now, the CPU
load will decrease significantly and the impact on the
code implementation is minimized.

Hint handlers are comparable to IRQ handlers, and
will immediately be injected into a blocking task’s
execution flow. This option is particularly suit-
able for tasks with high CPU utilization and in-
frequent self-suspensions. In contrast to IRQ han-
dlers, the hint handlers are task specific, and can be
(de)activated or changed arbitrarily at runtime (—
Line 47, 49). While the specific priority threshold
 behaves analogous to before, the nested execution
of hint handlers can also be (de)activated but will
consume additional stack space. Apart, the handlers
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Figure 4: Streaming test: Atomic packets (AP) vs. DynamicHinting (EQ/EW/HH)

will always be executed in the context of the task for
which they are called, and thus have the same access
rights on the task’s currently allocated resources.

Once received, the hint can either be handled entirely
within the hint handler or in response to the early wakeup.
However, a centralized processing might be more con-
venient in many cases, and thus we recommend to only
make the decision about the collaboration immediately,
and possibly throw an exception for a synchronized re-
source deallocation. Once more, Listing 3 gives an ex-
ample: Encapsulated in an infinitely executed SmartOS
try block (— Line 15) the task 7" calls two functions with
different CPU utilization characteristics: The ADCFunc-
tion (— Line 56) sleeps frequently and thus makes use of
early wakeup. The DSPFunction (— Line 46) generates
high CPU load and thus registers a hint handler first. On
its execution, the hint handler evaluates both the hint and a
contract by means of a time-utility-function (TUF) [13] in
Line 38. In case of no collaboration, it will simply return,
and the task will continue where the handler has been in-
jected before (i.e., somewhere between the lines 47 and
49). Otherwise the exception will bring the task execution
back to the innermost catch block in Line 19. Although
the early wakeup in Line 59 will always collaborate in our
example, the exception it possibly throws has the same ef-
fect: Independent from the code position where the hint
has been received asynchronously, the catch block will
synchronize this special situation and finalize the resource
usage in Line 20. The subsequent deallocation in Line 24
will immediately hand the resource over to the blocked
task which caused the hint. This other task will be re-
sumed immediately then, and our task from Listing 3 will
consequently be preempted. Yet, on its next resumption
it will re-request the voluntarily released resource in Line
28 and continue or start over.

5.3. Use case: A shared field bus

This section presents some test bed results from one of
our real-world WSN applications: Here, a sensor task at-
tempts to continuously stream captured and preprocessed
data over an exclusively shared peripheral bus. Even
though it strives for a high data rate, it operates the bus
at “best-effort”. Besides, it has a lower base priority than
two concurrently running time-critical tasks. These are
event-driven and require the same bus to sporadically ac-
cess a radio transceiver and a stepper motor driver: Vio-
lating their real-time demands has to be avoided carefully,
since this could easily lead to lost radio packets and im-
paired actuator control characteristics.

Figure 4 shows both the average bus allocation and task
blocking delay 7 for the real-time critical tasks, and the
achieved data rate p for the sensor task’s stream when us-
ing different implementation strategies. The achievable
best case values (no resource conflict, no stream interrup-
tion) are indicated as 7. and py., respectively.

1. First we implemented the sensor task to divide the
stream into atomic packets (AP), and to release the
resource after each packet transmission: While an
increasing (decreasing) packet length resulted in less
(more) management overhead and an increased (de-
creased) data rate pap, it also increased (decreased)
the allocation delay 7ap for the time-critical tasks.
Finding a reasonable trade-off for selecting an ade-
quate packet length proved to be hard.

2. Using explicit querying (EQ) to only release the bus
after each packet when really required, already im-
proved the situation: The resource management over-
head was kept at its minimum now, and the data rate
peq could consequently settle close the achievable
best case pp.. However, the continuous polling for
a hint still generated considerable CPU load, and the
frequency still affected the allocation delay 7gq de-
pending on the packet length.
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3. Following the general idea from Listing 3, we imple-
mented both a hint handler (HH) and early wakeup
(EW) for the sensor task. Since this combination did
immediately generate a hint as soon as the bus was
requested by a real-time task, we did not have to di-
vide the stream into atomic packets any more. In-
stead we simply sent a trailer to indicate a stream ter-
mination on-demand, and released the bus thereafter.
This approach kept both the resource management
overhead and the CPU load of the sensor task mini-
mal, and it even simplified the implementation of the
task logic. As a result, both the data rates pgw and
puu did stabilize close to the achievable maximum
Pbe, and the allocation delays Tgw and Ty could also
be kept close to the achievable best case Ty..

6. Collaborative resource sharing among
cores

According to the integration of DynamicHinting into
the SmartOS kernel, we also extended this concept to
even lower system levels by providing a hardware com-
ponent for coordinating the shared access on exclusive re-
sources among various CPU cores. Our test implementa-
tion makes use of a Spartan-3A FPGA where we synthe-
sized our resource manager and four cores of a simple 32
Bit CPU architecture with a five-stage instruction execu-
tion cycle. Figure 5 gives an overview:

The extended CPU instruction set provides an OUT
a, v instruction which communicates with the resource
manager over its (multi-port) configuration interface: De-
pending on the specified address a a core can (de)activate
DynamicHinting entirely for the specific resource which
is encoded in v, request and release it, or query the re-
source’s allocation state. In turn, the resource manager
makes use of core-specific IRQ signals to indicate an
emerging resource conflict by passing a hint to a currently
blocking core. When used in the context of a virtualization
solution, the OS on the specific core must thus be aware
of this communication channel. In fact, this complies per-
fectly to the centralized IRQ acceptance under SmartOS
(— Section 4). Comparable to the hint selection within
the OS kernel, the destination core of the IRQ depends
on the cores’ priorities. These can either be fixed, or be
derived from the priority of the currently running task on
the specific core. While the first option would probably be
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Task Tl‘tll |Task Teq | .| Task Tc.,tcl
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| Core C. / OS 5, |
1t

| HW resource manager |

[ CoreC, /0SS |-

| resource request % hint passing
Figure 6: The hierarchical DynamicHinting setup for
multi-core and multi-tasking systems

used for most system architectures with far-reaching iso-
lation, the latter can be used to make the selected priority
inheritance technique transparent across the core borders.
Then however, the OS is once more reliable for passing
(retrieving) this priority information v to (from) the re-
source manager via an OUT a, v command to yet another
dedicated address a.

Processing a hint IRQ can be done in two ways: If
the OS itself is the owner of the hinted resource, or if it
can withdraw resources from the tasks, it might terminate
their operation and return them for a handover. Other-
wise, e.g. for SmartOS, it forwards the hint to the current
resource owner task, and returns the resource to the hard-
ware resource manager as soon as the task has released it.
While this hierarchical approach is depicted in Figure 6,
forwarding and processing the hint is done as described in
Section 5. Again, contracts can be negotiated by the op-
erating systems and the tasks to define temporal resource
(de)allocation boundaries.

Up to now — and comparable to the implementation of
DynamicHinting within the SmartOS kernel — the hard-
ware resource manager is also used for coordinating the
access to resources only; but not for their protection.
While this was acceptable for the OS design where we had
to support hardware without appropriate protection mech-
anisms, this deficit can be solved now: If the resources are
e.g. attached to a shared bus, as depicted in Figure 5, an
optional access control unit can be provided by the hard-
ware resource manager to control and possibly seal off any
unauthorized access.

6.1. Use case: A shared field bus

Comparable to the purely software based stream test
from section 5.3, we configured the four CPU cores
Ci...Cy from Figure 5 to have increasing priorities.
While core C; generated frequent but low priority output
to the shared SPI bus (e.g. for a best effort stream), the
core C5 sporadically had to transmit more relevant infor-
mation over the same bus. Figure 7 outlines the core inter-
actions and shows performance results: As expected, the
allocation of a currently free resource takes exactly 5 cy-
cles on our five-stage CPU, since issuing the correspond-
ing OUT command means nothing else than an ordinary
CPU instruction. In case of a currently allocated resource
it takes 3 cycles to have the hardware resource manager
trigger the hint IRQ, and another 4 cycles to let the tar-
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Figure 7: Hardware support and core interactions for allocating a shared resource. Delays are given in CPU cycles.

get core execute the first instruction of the IRQ handler.
The values so far are constant for our hardware imple-
mentation. In contrast, the time for actually releasing the
notified resource is initially indeterministic, but depends
once more on the hint handling strategy and on optional
contracts: For our setup we demanded the core C to al-
ways collaborate in case it received a hint concerning the
shared SPI bus resource. The resulting resource allocation
delay for core C'3 was measured to be perfectly constant
at 160 cycles. Using e.g. 50 MHz as CPU frequency fi-
nally resulted in a resource allocation delay of 0.1 ps for
the free bus resource, and 3.2 us for the already allocated
but collaboratively shared bus resource.

As we have seen from this use case, implementing Dy-
namicHinting as peripheral resource manager module for
multiple cores allows the direct resource utilization by ap-
plication tasks. For virtualized systems in particular, this
might in the long run help to avoid access indirections
over additional drivers within a potential hypervisor.

7. Conclusion and outlook

In this paper we presented an entirely novel and uni-
fied resource sharing concept for open multi-tasking and
multi-core environments with real-time demands: Dy-
namicHinting initially allows combining the semantics of
task priorities, time, and events to simultaneously support
time-triggered and event-driven execution models for both
periodic and sporadic tasks:

At runtime the involved resource managers develop a
complete knowledge about currently lasting resource al-
locations and pending resource requests. In case of a cur-
rently not assignable resource they suspend the requester,
and perform priority inheritance on the resource owner ac-
cording to a selected policy. A blocking task will thus in-
herit at least the priority of the just suspended task. As
the most central innovation of our approach, the blocker
will also be notified immediately through a hint to become
aware of the situation and its spurious influence.

As we have seen from Section 5, the combination of
temporally bounded resource requests, dynamic hints, op-

tional contracts, and the priority inheritance protocol al-
ready provides a blocking task with the necessary time,
knowledge, objective, and CPU power to resolve the con-
flict in the most appropriate way. The question about how
to design the mentioned contracts and the TUFs for re-
liably bounding the collaboration delay has already been
discussed in [3, 4]. This paper added the synchronized
and unified handling of hints through exceptions as well
as the entire hardware realization of the approach. Our hi-
erarchical extension from Section 6 to even pass hints be-
tween the cores and the tasks thereon bridges the gap be-
tween virtualization (isolation) and real-time kernels (in-
tegration) by introducing an additional hardware resource
manager that is compatible to the resource manager in the
guest operating system SmartOS.

Although we currently apply our collaborative resource
sharing concept primarily for tasks within the SmartOS
multitasking kernel, the FPGA implementation from Sec-
tion 6.1 did already show convincing results for shar-
ing resources on-demand between (operating) systems
on several CPU cores. Thus, as subject of our current
work, further improvements aim on a theoretical feasi-
bility analysis for dynamically defined contracts and the
corresponding worst case allocation times across core bor-
ders. While we would certainly not recommend to exces-
sively soften the guest isolation paradigm in hypervisor
systems, a hardware-assisted virtualization can definitely
benefit from DynamicHinting for sharing at least those re-
sources collaboratively which cannot be assigned strictly
exclusive due to various reasons. In this regard, we con-
sider the co-design of kernel and hypervisor architectures
toward a compatible mechanism as a great opportunity for
managing the growing complexity of today’s embedded
systems.
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