
Ghost: Software and Configuration Distribution for
Wireless Sensor/Actor Networks

Marcel Baunach
Department of Computer Engineering

Am Hubland
University of Würzburg

baunach@informatik.uni-wuerzburg.de

ABSTRACT
Wireless sensor and actor networks commonly consist of a rat-
her large number of more or less widely distributed nodes. The
resulting spatial complexity arises severe software related main-
tenance problems like application code and configuration updates.
This paper presents the Ghost subsystem for efficient remote soft-
ware maintenance in such networks. Besides safety, security and
operation in heterogeneous environments we also address practical
aspects like performance and resource requirements. Some results
from a real-world installation will close this paper.

1. INTRODUCTION
In order to achieve a long lifetime for sensor/actor networks (hence-
forth simply called WSN), these distributed systems are subject to
regular maintenance cycles. Besides hardware related issues like
the renewal of power supplies or the replacement and attachment
of modules, software related modifications are also very common.
The latter allow application updates for integration of new functio-
nality or for fixing bugs. Sometimes, there is just the need to reset
a node or to modify its configuration for changing its behaviour or
individual role in the overall system.

The problem’s scope and intensity differs according to the evoluti-
on stage of the system. During software development, frequent up-
dates (test versions) for few nodes can be expected. The frequency
diminishes rapidly with the final release but then affects significant-
ly more nodes within the original environment. But still, several
updates might be required suddenly during the system runtime. It
is similar with hardware. During development there are commonly
few nodes but possibly they are already of different architectures.
Often, these nodes are densely placed and easily accessible. After
system deployment their number and heterogeneity increases wi-
thin a quite ample environment. Then, some of them are hardly or
not accessible at all. The conventional method to update sensor no-
des on demand by means of mobile computers and debug-interfaces
is safe and secure indeed but in any case extremely complex, an-
noying or even impossible. To counter this problem, the Ghost sub-
system offers an efficient method for accomplishing software and
configuration modifications via image distribution over the com-
munication infrastructure which is available anyway within such
networks. Since data dissemination protocols have received wide
attention within the WSN community, several similar approaches
like Typhoon [7], FiGaRo [8] and Deluge [6] already exist. Yet,
such systems commonly provide their own customized communi-
cation/routing protocol or even require a special runtime environ-
ment on the nodes. In our opinion, both premises are adverse, since
remote maintenance is important indeed but should neither defi-
ne the actual application’s communication nor affect the overall

W
ire

d 
(e

.g
. U

S
B
)

W
ire

le
ss

 (e
.g

. S
m

ar
tN

et
)

Gateway
Node

WSNWorkstation

Figure 1: Ghost infrastructure for wireless remote maintenance

system performance. This is why Ghost was designed to use any
available protocol and needs no modifications or extension of the
used operating system. Instead, our focus aims on resource-aware
integration into any software besides providing efficient and relia-
ble operation. In this paper we present the central concepts of the
Ghost remote maintenance subsystem but refer to radio communi-
cation for our concrete real world test bed.

2. CONCEPTS AND OPERATION
Figure 1 shows wireless remote maintenance as one possible Ghost
infrastructure. In this case, data is transferred from a workstation
computer to a dedicated gateway node. The gateway creates data
packets and transmits them to the destination nodes by any net-
work protocol available in the WSN. Depending on this protocol,
unicasts and broadcasts including routing are possible. If suppor-
ted, groupcasts offer the special possibility to modify software in a
role specific manner simultaneously for certain subsets of nodes.
Ghost is implemented as add-on for integration into any WSN ap-
plication. To be always available for remote commands, it runs in
parallel to each node’s individual software and performs three basic
operations:

1. reception and integrity check of Ghost command and data
packets (image fragments) from any of the node’s communi-
cation interfaces (radio, infrared, ethernet, CAN, etc),

2. direct execution of Ghost commands and buffering of images
in an external flash memory, and finally

3. reprogramming of affected memory blocks (haunting).

Therefore, the Ghost subsystem is organized in two modules (→

Fig. 2): Steps 1 and 2 are executed during regular node operation
(high level task). During step 3 the operating system along with the
entire application is stopped (low level functions). After haunting,
the device is reset.



SmartOS / Device Drivers

Application Code

Ghost
HL Task

Communication
Protocol

Communication
Module

External Flash
Memory

Task 1 Task n

Ghost
LL Functions

Program/Config
Memory

OS free

Energy
Harvester

Haunt!

Figure 2: Ghost integration with WSN applications

2.1 Ghost Functionality
Always keep in mind, that software based remote maintenance sub-
systems stay passive for most of the entire system uptime whereas
the fraction of their active operation time is relatively small. Thus,
the complexity and permanent resource requirements (CPU, RAM,
ROM) must be adjusted carefully to the available performance of
the nodes and a well balanced cost-benefit-ratio is required.

This is why the high level module runs as regular task and requires
no further adaptation of the remaining software. This task accepts
five basic commands from virtually any communication channel:

1. New: initiates a new image transmission by sending the pre-
conditions required to run or use the image (e.g. CPU type).
This is required to avoid accidental installation of incompati-
ble software or configurations which would render the node
inoperable.

2. Data: successively transmits data fragments until the entire
image is transferred. The fragments are limited by the pay-
load size of the underlying network protocol.

3. Reset: is used for explicit restarting of nodes.

4. Query: retrieves application, hardware and runtime related
information about the node. This always includes applicati-
on type, version, build number, CPU type, remaining ener-
gy and uptime. Additional data is optional and node-specific
but always limited by the payload of a single network data
packet.

5. Haunt: initiates updating of program and/or configuration
by any previously received image. This is done in Ghost low
level mode and finally invokes an implicit node reset.

Figure 3a shows an example for a possible remote software update
procedure via a gateway node. Depending on the requirements and
remaining memory resources, an additional clone-function can be
statically linked into the Ghost subsystem:

6. Clone: requests the currently running application code from
a node.

By first sending a query, a node can check its neighbourhood for
available software types and versions. Thereby newly deployed no-
des can integrate themselves almost autonomously into a running
WSN by requesting the appropriate software from neighbour no-
des. Figure 3b shows an example. Yet, this autonomy requires that

R
e
p
ly

Destination node

Source node

Q
u
e
ry

D
a
ta

1

D
a
ta

N

C
lo

n
e

N
e
w

H
a
u
n
t

D
a
ta

1

Destination node

D
a
ta

N

Gateway

Q
u
e
ry

H
a
u
n
t 
&

re
s
e
t

R
e
p
ly

optional ack

command

a
) 

G
a
te

w
a
y
 m

o
d

e
b

) 
C

lo
n

e
 m

o
d

e

H
a
u
n
t 
&

re
s
e
t

Figure 3: Ghost communication process

each new node is equipped with a certain initial application contai-
ning the Ghost subsystem and the knowledge about its future role in
the WSN. This role is defined by the application type, which is un-
ique for each kind of software and hardware combination (e.g. rou-
ter for TelosB nodes, ultrasound sensor for SNOW5 nodes, etc.).
Likewise, nodes can stay up-to-date by observing their environment
for newer versions of their own software. In contrast to the common
method, where a source node (gateway) pushes the software to each
affected node, cloning allows updates to be pulled over the whole
network without explicit routing or flooding. This desired virus like
spreading is extremely useful for very large networks where the in-
dividual handling of each single node would become too complex.
Of course, the network protocol must remain compatible between
versions to support any kind of long term self-maintenance.

2.2 Security
Secure data transmission is very critical in wireless sensor net-
works. This is especially true for the deployment and maintenance
of software and configuration images since a tapping attacker might
draw conclusions about operation and vulnerabilities of the overall
network. Of course, prevention of hostile code injections or node
takeovers is also mandatory.

The obvious technique is to encrypt all communication. Yet, the
used algorithm must provide an adequate security level at appro-
priate resource requirements. Furthermore, the key selection needs
careful consideration. Where an individual key for each node pro-
vides highest security (especially, if nodes can be stolen along with
the secret), a simultaneous updating of several nodes by a single
encrypted image is not possible any more. The same holds for clo-
ning, since key exchange methods among today’s low-power nodes
are not practicable. Thus, common keys increase the performance
while significantly reducing the network load altogether with ener-
gy consumption.

Our current implementation focuses on usage during WSN deve-
lopment in research and education. Thus, we prefer performance to
security and use either no encryption at all or the TEA algorithm
[12] for a minimum of security. Then, the password is not necessa-
rily node specific, but can depend on the application type, versi-
on and build number. This way and despite of a regular password
change with each update, it is still possible to supply several nodes
simultaneously with new software. At receiver side, the high level
task validates the packets regarding encryption and CRC checksum
before executing control commands or buffering new images.



2.3 Safety and Reliability
Safety and reliability are other important factors in remote mainte-
nance systems. This includes the guaranteed and complete recep-
tion of command and data packets at the desired destination no-
des. Concerning the communication, Ghost completely relies on
the used network and routing protocol. This accounts for compact-
ness and flexibility of the Ghost subsystem. Just the data packets
are successively numbered with each new transmission.

While communication is shifted to a WSN specific protocol, Ghost
integrates some mechanisms to guarantee smooth completion of
the actual update process and to prevent the node’s total break-
down caused by unpredictable errors while haunting. This is why
the Ghost subsystem is divided into two parts.

As the high level task runs as part of the application and in parallel
to the user tasks it is permanently ready to process Ghost packets
(→ Fig. 2). If a haunt command arrives, the Ghost task checks for
sufficient remaining energy to perform the expensive update ope-
ration. If energy is low, haunting is deferred to allow a possibly
available energy harvester to recharge the power supply. As soon as
enough energy is available or if the charge level can not be deter-
mined at all, the Ghost task stops the operating system and passes
control to the low level functions for haunting the system.

Checking the remaining energy before each update is very import-
ant since many sensor nodes are based on microcontrollers with
program flash ROM. Besides, many applications are statically lin-
ked and hard to modify at runtime. In both cases, the node’s pro-
gram memory must be erased before installing the new software. A
power breakdown between erasing and complete reflashing would
indispensably corrupt the node and require manual repair – if this is
possible at all. Indeed, the energy requirements for updating a node
may not be underestimated. They depend on the electrical charac-
teristics of program and flash memory and on the image size. The
latter defines the number of read/write cycles and in consequence
the total duration of this critical process. Section 4 shows the ener-
gy requirements of a concrete Ghost implementation.

Yet, underestimated energy resources as well as other unpredictable
problems can still lead to node reset or hanging during the update.
Thus, the Ghost low level functions configure an available watch-
dog timer to force an reset in case of a hanging node. A reset always
leads to a well defined system state, since the Ghost low level part
will never be erased from the ROM. In particular, it contains an
emergency function (→ Fig. 4), which is automatically executed at
node start-up to recover from awkward situations. First, it tests a
flag indicating the state of the last update. On success, the regular
application is started and the operating system takes over control.
On failure, the power supply is again checked repeatedly until there
is sufficient energy to restart the update.

3. IMPLEMENTATION
As useful and indispensable remote maintenance is for large scale
or frequently updated sensor networks, as complex are the resulting
requirements and challenges for a concrete implementation. There-
by, some problems are rooted in the underlying network (hardware
and protocols), in the node’s architecture and in the applied opera-
ting system. Our implementation of Ghost uses the SNOW5 [2, 5]
sensor node and theSmartOS [3] operating system. Within the test
application presented below we used theSmartNet wireless com-
munication protocol.

last update
successful?

Ghost LL

start OS

sufficient energy
available?

reflash

reset startup

N

Y

Y

N

reset!

haunt!

regular operation

application / Ghost HL

Figure 4: Ghost low level operation during system runtime

The SNOW5 [2, 5] nodes integrate a MSP430F1611 [10] controller
with 10 kB RAM and48 kB ROM running at8 MHz. An exter-
nal 2 MB flash memory allows simultaneous buffering of various
Ghost program and configuration images. Communication is do-
ne via a CC1100 [9] radio transmitter supporting data rates up to
500 kbps.

SmartOS [3] was developed for real-time operation of low-power
and low-performance devices like sensor nodes. The preemptive
scheduling of prioritized tasks allows prompt processing of inter-
nal and external events. Altogether with the sophisticated resour-
ce management policy, it allows the easy composition of arbitrary
tasks to still efficient applications. Thus,SmartOS based software
can easily be extended by the Ghost subsystem.

Finally, SmartNet was developed for both, CSMA/CA or slotted
wireless communication. It allows broadcasts, groupcasts, the in-
tegration of routing protocols and self-organizing communication
via e.g. HashSlot [1]. TheSmartNet high priority task processes
incoming data packets and redirects them to the appropriate recei-
ver tasks. Similar to TCP ports in IP networks, this is done by each
packet’s port ID and destination address. In turn, the receiver task
is signalled and reactivated bySmartOS according to its priority.

Fig. 2 shows the integration of the Ghost subsystem into aSmartOS
based software. SinceSmartOS is fully preemptive, it is sufficient
to link the Ghost modules into the the WSN application. Besides
adding the high level task, the linker also places the low level mo-
dule adequately to start the execution of the emergency recovery
function at system start prior to the operating system. The required
memory (RAM/ROM) adds up of the Ghost modules plus the com-
munication protocol and the flash memory driver. However, the last
two components are often part of the application anyway and thus
mean no extra system load. Yet, a slim and OS independent version
of the flash memory driver is required within the low level module
to gain read access to this device. In general, performance losses
caused by Ghost are negligible since only the relatively rare Ghost
commands trigger the execution of the high level task. As already
mentioned in section 2.3, an energy harvester is optional but can
account significantly to the system stability during memory update
processes.

4. TESTBED AND RESULTS
For evaluating the just described techniques under real world con-
ditions, we used a SNoW Bat [4] indoor localization system com-
prising 45 nodes. In this section we will present some results con-
cerning update speed, resource requirements and energy efficiency.



0

200

400

600

800

1000

1200

1400

10 20 50 100 150 200 220
data packet payload size [B]

a
c

h
ie

v
e

d
p

a
y

lo
a

d
d

a
ta

ra
te

[B
/s

]

0

20

40

60

80

100

120

140

U
p

d
a

te
d

u
ra

ti
o

n
[s

]

B/s

s

20 kB program image, SmartNet at 250kbps, no encryption, 45 nodes

Figure 5: Ghost performance for program image update

In fact, these metrics are not only Ghost dependent but also re-
flect some characteristics of the applied communication protocol,
the node’s software architecture and hardware components.

Regarding the ROM size, our current Ghost implementation takes
<880 B without and<1 kB with clone functionality (depending
on the compiler’s optimization level). The RAM requirements of
the high level module are about126 B fixed plus the buffer size for
the data packet payload. As figure 5 shows, the latter has significant
impact on the data dissemination time. Thus, we commonly chose
100 B for trade-off between speed and memory consumption.

When updating the software within our test bed, we found that
SmartNet managed to deliver the data very reliable, though the
nodes’ main application also made intensive use of wireless com-
munication during the remote maintenance process. Finally, repro-
gramming all 45 nodes by an image groupcast commonly took the
same time as reprogramming a single one (approx.22 sec). In
comparison, manual flashing of the same WSN system via JTAG
successively node by node took approximately 1 hour and was sim-
ply too much time-consuming. In fact, this expected speed-up was
the initial main motivation for developing the Ghost system at all.

Finally, table 1 shows the energy requirements of a single node
during various operation modes. One can see clearly, that updating
the program memory imposes significant load on the power supply
compared to regular operation. Yet, intentionally provoked node
breakdowns due to current peaks or empty batteries were safely
handled by the low level recovery function.

5. CONCLUSION AND OUTLOOK
In our paper we presented the Ghost remote maintenance subsys-
tem for wireless sensor and actor networks. We showed, that effi-
cient and fast software and configuration updates are possible wi-
thout the need for a predefined communication protocol or espe-
cially modified system software. Instead, Ghost integrates easily
into any WSN application and accepts data from arbitrary sources
(wired or wireless). Thereby it requires little memory and compu-
tational power. Besides, it supports role specific software deploy-
ment by either direct transmission via a gateway or by autonomous
self-maintenance of the nodes via cloning. This way, simultaneous
updates are even possible in heterogeneous networks. Finally, the
sophisticated low level module along with the optional encrypti-

on allows extremely safe and secure operation for reliable remote
maintenance. Our current work in this field addresses viral data dis-
semination techniques, power aware operation in general and ener-
gy harvesting in particular.

Table 1: Energy requirements during sensor node operation
low system load (no radio) 17mW
heavy system load (no radio) 26mW
data reception (radio) and buffering (flash)69mW
haunting process (copy flash to ROM) 81mW

6. REFERENCES
[1] M. Baunach. Speed, Reliability and Energy Efficiency of

HashSlot Communication in WSN Based Localization
Systems. In Verdone [11], pages 74–89.

[2] M. Baunach, R. Kolla, and C. Mühlberger. SNoW5: A
versatile ultra low power modular node for wireless ad hoc
sensor networking. In P. J. Marrón, editor,5. GI/ITG KuVS
Fachgespräch Drahtlose Sensornetze, pages 55–59,
Stuttgart, 17.–18. July 2006. Institut für Parallele und
Verteilte Systeme.

[3] M. Baunach, R. Kolla, and C. Mühlberger. Introduction to a
Small Modular Adept Real-Time Operating System. In
Distributed Systems Group, editor,6. Fachgespräch
Sensornetzwerke, pages 1–4, Aachen, 16.–17. July 2007.
RWTH Aachen University.

[4] M. Baunach, R. Kolla, and C. Mühlberger. SNoW Bat: A
high precise WSN based location system. Technical Report
424, Institut für Informatik, Universität Würzburg, May
2007.

[5] M. Baunach, R. Kolla, and C. Mühlberger. SNoW5: a
modular platform for sophisticated real-time wireless sensor
networking. Technical Report 399, Institut für Informatik,
Universität Würzburg, Jan. 2007.

[6] J. W. Hui and D. E. Culler. The dynamic behavior of a data
dissemination protocol for network programming at scale. In
J. A. Stankovic, A. Arora, and R. Govindan, editors,SenSys,
pages 81–94. ACM, 2004.

[7] C.-J. M. Liang, R. Musaloiu-Elefteri, and A. Terzis.
Typhoon: A Reliable Data Dissemination Protocol for
Wireless Sensor Networks. In Verdone [11], pages 268–285.

[8] L. Mottola, G. P. Picco, and A. A. Sheikh. FiGaRo:
Fine-Grained Software Reconfiguration for Wireless Sensor
Networks. In Verdone [11], pages 286–304.

[9] Texas Instruments Inc., Dallas (USA).CC1100 Single Chip
Low Cost Low Power RF Transceiver, 2006.

[10] Texas Instruments Inc., Dallas (USA).MSP430x161x Mixed
Signal Microcontroller, Aug. 2006.

[11] R. Verdone, editor.Wireless Sensor Networks, 5th European
Conference, EWSN 2008, Bologna, Italy, January
30-February 1, 2008, Proceedings, volume 4913 ofLecture
Notes in Computer Science. Springer, 2008.

[12] D. J. Wheeler and R. M. Needham. TEA, a Tiny Encryption
Algorithm. In B. Preneel, editor,FSE, volume 1008 of
Lecture Notes in Computer Science, pages 363–366.
Springer, 1994.


