
Poster Abstract: Enabling Real-Time in WSN

Applications

c© Marcel Baunach, Clemens Mühlberger, Christian Appold 2009
Department of Computer Engineering, University of Würzburg, Am Hubland, 97074 Würzburg, Germany

Email: {baunach, muehlberger, appold}@informatik.uni-wuerzburg.de

Abstract—Increasing complexity of today’s WSN applications
can quickly boost the real-time requirements of the underlying
sensor nodes. Using preemptive operating systems with special
scheduling, resource and timing mechanisms is one way to retain
acceptable reactivity for single tasks, nodes and finally for the
overall system.

I. WHY REAL-TIME MATTERS

Current research on Wireless Sensor Networks (WSN) is

still mainly focused on networking itself. Indeed, increasing

performance and computational power of recent sensor nodes

allows a much wider scope of useful application scenarios.

Especially Sensor Actor Networks (SANET) are central for the

upcoming Ubiquitous Computing but also establish new chal-

lenges and require a clear focus shift from pure communication

towards real-time capability within such distributed systems.

The inherently strong interaction with the surrounding envi-

ronment as well as the fast cooperation of participating nodes

and embedded components will commonly need a much higher

level of system reactivity. Sensing, interpreting and propa-

gating environmental conditions will not suffice any more,

but active participation and proactivity gain in importance,

too. Additionally, complex applications often apply a modular

design in which even simple software compositions can rapidly

result in serious runtime problems and significant performance

loss of the overall system. Still, available operating systems for

sensor nodes often address these problems just insufficiently.

However, special support within multi-threaded preemptive

systems might help to retain acceptable reactivity for indi-

vidual nodes and the overall WSN. Initially, we will point

out quite typical real-time aspects within a complex real-

world scenario and describe the various emerging problems

regarding task scheduling, resource and time management.

Finally we will present our concepts and solutions within the

fully preemptive real-time operating system SmartOS.

II. REQUIREMENTS OF REAL-WORLD SCENARIOS

In this section we will present the potential application

complexity by presenting a real WSN based tracking and

steering control system for indoor vehicles.

The central localization algorithm periodically estimates

the vehicle’s current position from distance measurements

between a mobile node mounted on the vehicle itself and

static nodes within the environment. Then, a fuzzy controller

computes the subsequent deviation from the desired track and

readjusts the vehicle movement. The core software system

comprises seven concurrently running main tasks for distance

measurement, position estimation, radio communication, fuzzy

logic, motor control as well as the main application and a

remote maintenance task for software updates. Nevertheless,

even a single one of today’s low performance sensor nodes can

be sufficient if the various emerging problems from the appli-

cation’s compositional complexity are handled adequately. The

prerequisites will be addressed next.

Since the vehicle perpetually moves around, at least local-

ization and fuzzy control must be implemented as periodic

tasks with a suitable frequency to avoid crashes at the current

velocity. The distance measurement in particular, which is

based on TDoA between radio and ultrasound, requires a

constantly precise, high-resolution and system load indepen-

dent timestamping of signal arrival times. This also implies

the timely allocation and configuration of the sender and

receiver hardware, which requires resource sharing among

several tasks. The aggregation of distance information at the

mobile node uses a TDMA radio protocol and thus requires

node synchronization for exact adherence to the time slots.

Thus, data must be available on time at the sender and needs

a high reactivity for fast processing at the receiver. For further

improving the localization frequency, distance measurement

and data aggregation tasks are both executed while the position

estimation task still processes the information from the last

measurement simultaneously. Thereby, the significant CPU

load needs sophisticated scheduling and must provide pre-

emption to avoid long-term blocking of highly reactive tasks.

These real-time requirements, however, vary according to

each individual task’s current conditions. E.g. during distance

measurement, the corresponding task temporarily needs a high

priority. Beyond, other tasks should be privileged by means of

dynamic priorities.

The just described tracking system was developed com-

pletely independent from the steering control and remote main-

tenance systems. Still, their tasks require interaction and inter-

task-communication. Additionally, they must be composable

even in case of potentially overlapping resource requirements.

E.g. the motor control and measurement tasks share a common

hardware timer to generate a preferably uninterrupted PWM

signal for speed control and a sporadic square wave for driving

the ultrasound transmitter, respectively. Finally, the fuzzy logic

also produces high CPU load in parallel to the localization

process and the remote maintenance system shall always be

ready for external commands.



Next, we will outline problems of existing operating systems

and our solution strategies regarding real-time operation.

III. PROBLEMS OF CURRENT SYSTEMS AND OUR

SOLUTION STRATEGIES

Many available operating systems for sensor networks

lack special support for such complex real-world scenarios.

They often do not support preemptive or prioritized tasks,

which hardly allows dynamic adaption to changing system

requirements at runtime. In particular, the consequently pri-

ority unaware resource management policy further reduces

the desired reactivity of time critical tasks. Some systems

like TinyOS [1] and Contiki [2] follow an event-driven ap-

proach, where processes are implemented as event handlers

that run to completion. Problematic in purely event-driven

implementations is, that a lengthy computation completely

monopolizes the CPU, which makes the system temporarily

unable to quickly respond to external events. Additionally, it

prohibits the interleaved execution of several computations.

One solution to these problems is to provide a multi-threaded

operation model. Although multi-threading extensions exist

for some event-driven systems, they often lack important

features like priorities or intelligent scheduling strategies (e.g.

TOSThreads in TinyOS or Protothreads in Contiki). The basic

architecture of these inherently non-preemptive systems also

often limits the applicability of the multi-threaded approach

and therewith the expected advantages.

Systems which inherently offer preemptive multi-threading

are e.g. Mantis [3] and Nano-RK [4]. Nano-RK lacks dynamic

priorites and uses the preemptive Priority Ceiling Protocol

emulation Highest Locker Priority for resource assignment.

This scheduling policy has the disadvantage that low prior-

itized tasks can block intermediate prioritized ones though

the high priority task that defined the ceiling priority not

even currently demands the resource in question. In fact, this

leads to unnecessarily bad reactivity and can cause late results

of the intermediate prioritized tasks. Mantis uses preemptive

time-sliced priority based thread-scheduling with round-robin

semantics within a priority level. Indeed, it provides no mech-

anism to limit priority inversion [5]. Although both operating

systems provide a local system time, they do not offer the

possibility to wait on events or resources with a limited timeout

for reacting on various runtime imponderabilities. Finally,

the low resolution of 1 ms prohibits precise event capturing

as already required for various measurements like ultrasonic

position estimation.

To meet the special requirements regarding reactivity and

modularity of complex WSN/SANET applications, we devel-

oped the SmartOS real-time kernel to integrate four basic

concepts. Most central is the inherent system timeline with

a resolution of 1 µs. It grants an individual local time for

each node and is used for automatic timestamping of external

events. Furthermore, it allows periodic tasks and limited

waiting for events and resources. By definition, tasks are

fully preemptive and possess a variable priority, each. This

provides dynamic adjustment of their individual reactivity to

changing system requirements and environmental conditions.

The dynamic (de)allocation of resources at runtime allows

tasks to use them just on demand and is essential for free com-

position of tasks to a more complex total system. While the

priority inheritance protocol speeds up the resource handover

from lower to higher prioritized tasks, we also implemented

a mechansim of task cooperation which improves reactivity

and even grants deadlock detection and recovery at runtime.

Finally, an event concept is available for task interaction and

synchronization. These events can be triggered by either tasks

or external occasions.

In spite of its complexity regarding scheduling, task-

interaction, time measurement and resource management, the

presented application was successfully implemented on a sin-

gle SNOW5 [6] sensor node (MSP430@8MHz, 10KB RAM,

48KB ROM). With it, we achieved a localization frequency of

approximately 6 Hz at a precision of around 2 cm and a track

deviation of about 20 cm.

IV. CONCLUSION

We showed, that real-time can already be relevant for

today’s WSN/SANET applications. Especially when task-

parallelism and intense environmental interactions are re-

quired, available operating systems commonly lack special

support. For enabling even resource constrained sensor nodes

to execute complex real-time applications, we developed the

embedded operating system SmartOS. Within 1.8 kB of ROM,

SmartOS offers concepts which allowed us to successfully

implement a complex vehicle tracking and steering application

within a WSN. Therewith even difficult real-time problems

can be mastered by using optimized software. For the future

we expect that more powerful sensor nodes will enlarge the

realization of even more ambitious applications. The design

of SmartOS with its preemptive multi-threaded approach and

its optimized scheduling and resource management policies

suits a new broad class of applications which sensor networks

already are or soon will be able to execute.

REFERENCES

[1] U. Berkeley, “TinyOS,” Web site http://www.tinyos.net/, UC Berkeley,
2004. [Online]. Available: http://www.tinyos.net/

[2] Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt, “Contiki - A
Lightweight and Flexible Operating System for Tiny Networked Sen-
sors,” in LCN ’04: Proceedings of the 29th Annual IEEE International
Conference on Local Computer Networks. Washington, DC, USA: IEEE
Computer Society, 2004, pp. 455–462.

[3] S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth, B. Shucker,
C. Gruenwald, A. Torgerson, and R. Han, “MANTIS OS: An embedded
multithreaded operating system for wireless micro sensor platforms,”
ACM/Kluwer Mobile Networks and Applications (MONET), Special Issue
on Wireless Sensor Networks, vol. 10, no. 4, pp. 563–579, August 2005.

[4] A. Eswaran, A. Rowe, and R. Rajkumar, “Nano-RK: An energy-aware
resource-centric RTOS for sensor networks,” in RTSS ’05: Proceedings of
the 26th IEEE International Real-Time Systems Symposium. Washington,
DC, USA: IEEE Computer Society, 2005, pp. 256–265.

[5] O. Babaoglu, K. Marzullo, and F. Schneider, “A For-
malization of Priority Inversion,” 1993. [Online]. Available:
citeseer.ist.psu.edu/babaoglu93formalization.html

[6] M. Baunach, R. Kolla, and C. Mühlberger, “SNoW5: A versatile ultra low
power modular node for wireless ad hoc sensor networking,” in 5. GI/ITG
KuVS Fachgespräch Drahtlose Sensornetze, P. J. Marrón, Ed. Stuttgart:
Institut für Parallele und Verteilte Systeme, 17.–18. Jul. 2006, pp. 55–59.


