
Introduction to a Small Modular Adept Real-Time Operating System

Baunach, Marcel Kolla, Reiner M̈uhlberger, Clemens

Department of Computer Engineering, Am Hubland, University of Würzburg, Bavaria, Germany

{baunach, kolla, muehlberger}@informatik.uni-wuerzburg.de

Abstract
In this paper we presentSmartOS, a preemptive real-time
operating system for embedded systems like sensor/actor
nodes. After a short introduction and motivation, we present
the basic concepts along with a simple example and con-
clude with current work and further outlook.

Keywords operating system, real-time, multitasking, wire-
less sensor network, sensor node

1. Introduction
Distributed systems are made of several interacting compo-
nents. Wireless sensor networks in particular may consist of
a huge number of cooperating nodes handling even complex
tasks. However, such embedded systems are subject to tight
power, little memory and hard energy constraints. For some
applications it is even necessary to offer real-time operation
within control and feedback control systems on sensor/actor
nodes.

Up to a certain complexity, a single-loop software system
might accomplish these demands, but this would not be
very comfortable at all as it is inflexible and consumes lots
of energy and space. Moreover, the response time of such
single-task systems is high, the processor load is poor and
the program code is hardly maintainable or reusable.

An operating system (OS) might grant efficient and suit-
able solutions for these problems. Obviously, it has signifi-
cant influence on the performance of embedded devices as
it coordinates hardware access as well as execution and co-
operation of all software parts. Since subtle optimizations
require deep analysis of the overall system software, it is
common practice in embedded software development to link
operating system, drivers and the application itself to one
monolithic block.

Further challenges arise from the distribution of appli-
cations over a large number of nodes. This way, communi-
cation becomes another main focus during the development
process to which a good operating system should contribute.
Special problems here are (wireless) networking, node syn-
chronization, information propagation, security and in some
cases the interaction of different node architectures within
heterogeneous networks.

This paper introducesSmartOS, asmall modularadept
real-time operatingsystem for sensor nodes. It starts with
the motivation for its development despite of the availabil-
ity of other similar systems. Next, basic concepts, some im-
plementation details and a short software example follow.
We conclude with an overview of currentSmartOS based
projects and an outlook to further development goals and on-
going research.

2. Motivation
For embedded systems and wireless sensor networks in par-
ticular, some operating systems are yet available.

The component based tinyOS [1] applies an execu-
tion model driven by events and commands. The run-to-
completion tasks are non preemptive and share a single
stack. Applications are implemented using the programming
idiom nesC. The operating system freeRTOS [2] is capable
of real-time operation and manages a message queue for its
alternatively preemptive or cooperative tasks. Applications
are written in plain C and a trace visualization tool exists.
Preemptivity is also found within the small operating system
SOS [3]. It offers an event-based design and support for crit-
ical sections without priority ceiling. Up to 7 independent
timers can be handled. The main focus of BTnut [4] lies on
network application. It deals with prioritized and coopera-
tive but non preemptive tasks. Dynamic heap allocation is
implemented and a system tracer is offered.

However, our vision of an OS for sensor/actor nodes de-
manded fully preemptive tasks despite of a modular design,
real-time operation and energy awareness. Hence, we de-
sired a priority based scheduler, a high resolution time man-
agement with a local timeline and an unified interrupt and
resource concept with priority ceiling. This allows periodic
tasks as well as precise timestamping of internal and external
events. Applications should be developed in plain C for effi-
cient low level hardware access. The next section addresses
the basic techniques in detail.

3. SmartOS concepts
SmartOS is a minimalistic operating system for small de-
vices like sensor nodes. The main goals are preemptive mul-
titasking, real-time operation and modularity despite of little
RAM and ROM requirements on slow microcontrollers or

processors. Due to hardware constraints on most microcon-
trollers, memory protection is not supported. A reference im-
plementation for TI’s MSP430 MCU family [5] is available
and includes

• an economic and fast core, responsible for scheduling
and context switching, time and resource management,
energy savings and error recovery,

• support for various hard- and software resources like
device drivers and communication protocols,

• low interrupt latency with automatic timestamping and
demultiplexing of shared hardware interrupt vectors, and

• modular task and resource composition for assembling
applications from code repositories.

The four foundation pillars are tasks, events, resources
and time management (see Fig. 1). They allow efficient and
easily maintainable software development even for complex
embedded applications.

Figure 1. SmartOS architecture

SmartOS’ time managementuses a64 bit timeline, driven
by a hardware timer of the underlying MCU. This way, time-
outs as well as all other time-dependent services gain a high
precision. In case of the MSP430 MCU, this means a res-
olution of 1 µs for timestamping and task scheduling. An
additional watchdog timer can be activated to recover from
software failures within non-responding tasks (deadlocks,
endless loops, etc.).

SmartOS tasksdescribe the behaviour of the overall sys-
tem, i.e. they control software and hardware activities. Upto
254 user defined and preemptive tasks are supported, each
possessing a never returning entry function, an initial prior-
ity (1 – 255) and an individual stack area. A source code
profiler is available to compute an upper bound for the stack
size of each task at compile time – if possible. As such anal-
ysis is a hard problem, adequate annotations within the C
comments can be added to refine the estimation. The set of
tasks is static after linking but their priority can be modified

dynamically at runtime. The scheduler selects the execution
order depending on the task priorities and allows context
switching within e.g.20 µs on an MSP430 MCU running
at 8 MHz. Per default, the predefined idle task is scheduled
with lowest priority (0) if no other task requires CPU time.
This is essential for energy management as it controls ar-
chitecture specific low power modes and performs dynamic
frequency control.

SmartOS supports up to 255 user definableeventsto
synchronize tasks and to interact with hardware compo-
nents. Therefore, hardware interrupts are directly mappedto
events. Each task may wait for the occurrence of an event
with a relative or an absolute timeout. This allows further ac-
tions even if the expected event does not occur. Otherwise, if
no timeout is given, the task might wait forever. The major
advantage of absolute deadlines is the higher precision when
implementing periodic tasks. If an event is set by a task or
an interrupt handler, this causes the highest prioritized task
waiting for this event to become ready (see Fig. 2). In con-
sequence, this might even produce a context switch.

Figure 2. SmartOS scheduling and IRQ handling

SmartOS resourcescoordinate the (exclusive) access of
tasks on hardware devices, like timers and buses, or on ab-
stract entities, like data structures. Thus, semaphores can
also be simulated easily. Furthermore, an individual initial-
ization function per resource may be specified for automatic
configuration of the underlying object at system startup. In-
ternally, the assignment of a resource is managed via events.
Again, tasks can wait for resource allocation by specifying
an absolute, relative or no deadline. To avoid thwarting of
resource owning tasks,priority ceiling within the resource
concept temporarily increases the priority of the currently
owning task up to the highest priority of all other tasks wait-
ing for this particular resource. Only the owner task of a re-
source is liable and capable for releasing it.

SmartOS’ interrupt conceptsupports hardware and soft-
ware interrupt handling in kernel mode. Per default, inter-
rupt cascading is disabled but can be reactivated if desired.
As soon as a hardware interrupt occurs, a general IRQ dis-
patcher is executed. It stores the current system time with a
latency between 9 and 10 cycles on a MSP430 MCU. When
running at8 MHz, this allows the calculation of a timestamp
with precision of≈ 0.8 µs regarding a time discretion of

1 µs for the timeline. Next, the dispatcher switches to the
kernel stack for context saving and handler execution. Af-
ter processing the specific handler function, the scheduleris
executed again. For most architectures it is common prac-
tice to share hardware IRQs among several sources. This
is a problem when developing modular software compo-
nents independently from each other as a common IRQ han-
dler must be adopted to meet the requirements of all mod-
ules.SmartOS addresses this issue by supporting indepen-
dent software IRQ handlers for arbitrary sources. These are
subordinate to hardware IRQ handlers and allow automatic
demultiplexing of shared hardware interrupts (see Fig. 2).

For most hard real-time applications, performance can
not be sacrificed to provide safety or convenience. To opti-
mize speed and reactivity,SmartOS executes as little code
as possible in kernel mode and disables hardware interrupts
only within a very short section of a few assembler instruc-
tions. Apart from some architecture specific parts which use
assembler,SmartOS is implemented in the C programming
language. The reference implementation for TI’s MSP430
MCU [5] consumes1.4 kB program ROM and90 byte

RAM. Any additional task requires46 byte RAM. Energy
analysis on the sensor node SNOW5 [6, 7] running at8 MHz

showed a current consumption of6.5 mW in sleep mode
(idle task) and19 mW in active mode.

4. Example
For better understanding the following example will illus-
trate someSmartOS concepts from section 3. First, we will
declare two tasks, each controlling the periodic flashing ofa
LED. The one with relative, the other with absolute delay.

1 Time_t delay = 3000000; / / d e l a y i n µs

2

3 / / t a s k w i t h s t a c k−s i z e 10×16 b i t , p r i o r i t y 200
4 OS_DECLARE_TASK(tLED_Red , 10, 200);
5 OS_TASKENTRY(tLED_Red) { / / e n t r y f u n c t i o n
6 while (1) {
7 sleep(delay); / / r e l a t i v e d e l a y
8 LED_toggle(LED_RED);
9 }

10 }
11

12 / / t a s k w i t h s t a c k−s i z e 10×16 b i t , p r i o r i t y 200
13 OS_DECLARE_TASK(tLED_Blue , 10, 200);
14 OS_TASKENTRY(tLED_Blue) { / / e n t r y f u n c t i o n
15 Time_t deadline;
16 getCurrentTime (& deadline);
17

18 while (1) {
19 deadline += delay;
20 sleepUntil (& deadline); / / a b s o l u t e d e l a y
21 LED_toggle(LED_BLUE);
22 }
23 }

Next, we will do some work concurrently to the LED
tasks. Therefore, we declare one single interrupt handler to
manage two channels of a DMA controller. It fills a buffer
for subsequent digital signal processing. As soon as the
buffer is full, an event will be triggered and a task waiting

for this event will resume. Notice the automatic stack size
estimation for the DSP task and its exclusive access on the
data buffer.

1 / / e v e n t and r e s o u r c e d e c l a r a t i o n
2 OS_DECLARE_EVENT(evDSP);
3 OS_DECLARE_RESOURCE(DataBuf);
4

5 / / IRQ h a n d l e r f o r DMA p r o c e s s i n g
6 void BufferHandler(int channel) {
7 / / . . . some (c h a n n e l d e p e n d e n t) code
8 if (buffer_is_full)
9 __syscall_setEvent (&evDSP); / / t r i g g e r e v e n t

10 }
11

12 / / d e c l a r e IRQ h a n d l e r f o r c h a n n e l 0
13 OS_DECLARE_IRQ_HANDLER(OS_IRQ_DMA0 ,
14 &BufferHandler , 0);
15

16 / / d e c l a r e IRQ h a n d l e r f o r c h a n n e l 1
17 OS_DECLARE_IRQ_HANDLER(OS_IRQ_DMA1 ,
18 &BufferHandler , 1);
19

20 / / DSP t a s k w i t h a u t o m a t i c s t a c k−s i z e e s t i m a t i o n
21 / / and p r i o r i t y 50
22 OS_DECLARE_TASK(tDSP , __STACK__AUTO__ , 50);
23 OS_TASKENTRY(tDSP) { / / e n t r y f u n c t i o n
24 while (1) {
25 waitEvent (&evDSP); / / w a i t w i t h o u t t i m e o u t
26 / / g e t e x c l u s i v e a c c e s s on DataBuf ,
27 / / p r o c e s s t h e b u f f e r , and r e l e a s e i t .
28 getResource (& DataBuf);
29 DSP(); / / some DSP f u n c t i o n a l i t y
30 releaseResource (& DataBuf);
31 }
32 }

The final step is to properly launch the system at power-
up. This is done by a never returning main-function as entry
point for the whole application:

1 OS_MAIN {
2 init_osc (); / / i n i t MCU c l o c k
3 os_init_environment (); / / i n i t t a s k s , e v e n t s , r e s .
4 run_os (); / / s t a r t SmartOS s c h e d u l e r
5 }

5. Conclusion and outlook
In this paper we gave some benefits of operating systems
for embedded systems and sensor/actor nodes in particular.
Next, we introduced some of our reasons for implementing
an operating system from scratch despite of other existing
ones. The underlying techniques ofSmartOS were explained
and a meaningful example provided a deeper insight to com-
plete this paper.

SmartOS was yet tested successfully within various
projects like the ultrasonic localization system SNOW BAT

[8]. Further applications based onSmartOS and extensions
for the SNOW5 sensor node include stepper motor control,
digital compass implementation, GPS readout, CAN bus in-
terfacing and a TCP/IP stack for ethernet connection. The
actual main project is the real-world installation of a WSN
based vehicle-to-infrastructure communication system com-
prising 70 SNOW5 nodes. Right now,SmartOS is available
for TI’s MSP430 MCU family [5] and thus runs also on

some other nodes like TelosB [9]. However, we are working
on further ports for other 16-bit and 32-bit microcontrollers,
e.g. Hitachi’s SuperH family.

Our short term research objectives are the support for
multi-CPU nodes, energy harvesting techniques and analysis
of various wireless communication protocols (B-MAC [10],
PEDAMACS [11], SCP-MAC [12], TRAMA [13]). Addi-
tionally, we are studying the possibilities for secure and re-
mote software updates via radio, IrDA and ethernet. One
long-term goal is the integration of well-known concepts
from agent technologies like negotiation or auction into ex-
isting processes for data propagation or task scheduling.

References
[1] UC BERKELEY: TinyOS. http://www.tinyos.net/,

2004.

[2] BARRY, RICHARD: FreeRTOSTM homepage. http://www.
freertos.org/, 12. December 2005.

[3] SKYDAN , OLEG: SOS - small operating system. http:

//skydan.in.ua/SOS/, 25. February 2006.

[4] ETH ZURICH: BTnut. http://www.btnode.ethz.ch/,
2007.

[5] TEXAS INSTRUMENTS INC., Dallas (USA):MSP430x1xx
Family User’s Guide, 2006.

[6] K OLLA , REINER, MARCEL BAUNACH, and CLEMENS

M ÜHLBERGER: Snow5: a modular platform for sophisticated
real-time wireless sensor networking. Technical Report 399,
Institut für Informatik, Universiẗat Würzburg, January 2007.

[7] K OLLA , REINER, MARCEL BAUNACH, and CLEMENS

M ÜHLBERGER: Snow5: A versatile ultra low power modular
node for wireless ad hoc sensor networking. In MARRÓN,
PEDRO JOSÉ (editor): 5. GI/ITG KuVS Fachgespräch
”Drahtlose Sensornetze”, pages 55–59, Stuttgart, July 2006.
Institut für Parallele und Verteilte Systeme.

[8] K OLLA , REINER, MARCEL BAUNACH, and CLEMENS

M ÜHLBERGER: SNoW Bat: A high precise WSN based lo-
cation system. Technical Report 424, Institut für Informatik,
Universiẗat Würzburg, May 2007.

[9] POLASTRE, JOSEPH, ROBERT SZEWCZYK, and DAVID

CULLER: Telos: Enabling ultra-low power wireless research.
In Proceedings of the Fourth International Conference on
Information Processing in Sensor Networks: Special track on
Platform Tools and Design Methods for Network Embedded
Sensors (IPSN/SPOTS), 25.-27. April 2005.

[10] POLASTRE, J., J. HILL , and D. CULLER: Versatile low
power media access for wireless sensor networks. In
SenSys04, pages 95–107, Baltimore, MD, November 2004.
B-MAC.

[11] COLERI-ERGEN, S. and P. VARAIYA : Pedamacs: Power
efficient and delay aware medium access protocol for sensor
networks. IEEE Trans. on Mobile Computing, 5(7):920–930,
July 2006. PEDAMACS.

[12] YE, W., F. SILVA , and J. HEIDEMANN: Ultra-low duty cycle
mac with scheduled channel polling. In SenSys06, pages

321–334, Boulder, CO, November 2006. SCPMAC.

[13] RAJENDRAN, V., K. OBRACZKA, and J. GARCIA-LUNA-
ACEVES: Energy-efficient, collision-free medium access
control for wireless sensor networks. Wireless Networks,
12(1):63–78, February 2006. TRAMA.

