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Abstract This technical paper describes the architecture of SNOW?, a low power
sensor node for ad hoc wireless sensor networking (WSN). The node’s versatility
turns it into an ideal tool for WSN research, educational and commercial appli-
cations. After explaining the basic concept, the hardware design will be shown in
detail. An extensive comparison to existing nodes will be given regarding techni-
cal aspects like application specific customization, power consumption, wireless
communication and operating system design. Outstanding features and internals
of the newly developed real-time operating system SMARTOS for sensor nodes
will also be illustrated.

1 Introduction

The minimization of powerful information technology is essential for its integration into
daily life. The deployability of small-sized autonomous systems into almost any object
supports humans as well as machines and leads to increased convenience, performance,
security, etc. However, one must always take into concern, that minimalistic computers
have low performance due to very restrictive requirements like ultra low power con-
sumption [1]. Thus, the demand for wireless networks of small autonomous devices
increased heavily within the last few years. A so called wireless sensor network (WSN)
uses the combined power of many small devices to solve even complex problems un-
der exceptional circumstances for which a single device was too weak. Nevertheless,
the successful coordination and interaction of these sensor nodes is a hard problem,
comprising research areas like communication, self-organization, fault-tolerance, dis-
tributed algorithms and low-power design in both hardware and software.

As mentioned in [1-3], several sensor nodes already exist. Nevertheless, after care-
ful comparison of some of them, we developed the new sensor node SNOW? to mainly
achieve a higher versatility and more flexible communication at significantly improved
power consumption (see section 2). This paper describes in section 3 which hardware
components were selected for this purpose and which effects each individual decision
implied on the node’s realization. The circuit design follows in section 4 and examples
for hardware extensions for SNOW? are shown in section 5. A detailed comparison to
other nodes follows in section 6. The new real-time operating system SMARTOS for
small devices like sensor nodes will be presented in section 7. Some application sce-
narios are shown in section 8, before a short conclusion and an outlook to future work
(section 9) closes this technical paper.



2 Goals, requirements and features

Important requirements and fundamental factors for WSN applications like fault toler-
ance, scalability, deployment and power consumption can be found in [4,5]. As men-
tioned in [6], we mainly focused on following aspects when designing SNOW? (see
figure 1):

modularity and customizability Most important for our research is the support of ad-
ditional analog and digital devices. Thus, an easy to handle design for stackable
daughter boards is mandatory to propagate arbitrary signals and buses like SPI or
I°C to extensions when required.

energy efficiency Low power consumption allows a WSN to operate properly for a
long time even with limited power supplies like batteries. Therefore not only eco-
nomical hardware components are required but energy saving modes must also be
supported by software.

flexible communication Since wireless communication is obligatory in WSN, we use
a low power multi channel radio transceiver for research on communication proto-
cols. For versatile communication and debugging, SNOW? is additionally equipped
by some serial as well as JTAG interfaces. Further communication transceivers sim-
ply can be mounted by means of extension boards.

complete autonomous operation and robustness While cooperation between the sen-
sor nodes improves the performance of the whole WSN, a single node should be
able to operate autonomously for a specific amount of time, and if it is just for
logging sensor data.

compact design To be small-sized, all electronic components are SMD size only. But
for a comfortable and fast prototyping of diverse extensions on standard bread
boards, a 2.54 mm grid was chosen for the node’s headers. Thus, we found a rea-
sonable trade-off between the overall size and convenience.

Figure 1. A SNOW? node, screwed onto acrylic glass



3 Hardware components and specifications

Our goals described above mainly outline the hardware components to use. This section
will explain the specific components applied in detail and illuminate why each one
was chosen (see figure 2). In addition to the requirements mentioned above one should
always keep two things in mind:

1. A small but powerful operating system will be required to handle all the different
hardware devices and to provide a simple to use interface for the application run-
ning. A detailed description of our operating system SMARTOS can be found in
section 7.

2. All devices must provide low-power modes and accept a common operation voltage
to avoid the use of multiple power supplies or DC/DC regulators. In our design we
support operation voltages from about 3 V with all devices active, down to 1.8 V
with only MCU and radio active.

Onboard devices Central unit Interfaces
Radio 48 x1/0
_ChipCon €C1100 MCU [ General purpose digital 1/0 |
433MHz, 250kbps _TI MSP430F1611 8 x ADC
Memory 16Bit, 8MHz [Analog sensor interface |
“Atmel 45DB161B 48K ROM, 10K RAM 2 x DAC
Flash, 16MBit |Analog actor interface |
RS232 optional SPI / 12C
~ Sipex 3222ECY 0s [ Digital interfaces |
2 channel, 225 kbps| [ -.---- Smart0S JTAG
Power optional Low power / memory [ Debugging, Programming |
LM1117MP33 |  |..... Multitasking 2 x RS232
"“Linear regulator Hard Realtime [ Debugging, PC interface |

Sensors Expansion boards
Temperature, humidity, light, pressure, GPS| Consmunication
|SmartNet MAC protocol, IR, ultrasonic RX/TX, USB, CAN, 802.11b, audio amplifier

Figure 2. SNOW" — a rough overview

The central unit of a sensor node is its microcontroller. The design of SNOW? supports
the 16 bit ultra low power MCU family MSP430 [7] from Texas Instruments (TI). The
device we prefer is the MSP430F1611 [8] with 48 kB of flash memory (ROM) and
10 kB of RAM. It features five operation modes with different energy characteristics
from 0.2 pA in standby mode up to 2.5 pA (9 nA) in active mode at 8 MHz and 2 V
(3 V). Its supply voltage ranges from 1.8 to 3.6 V (see table 1), so battery-operation
will be no problem. We are also ready for TI's pin-compatible successor MCU with
1 MB of on-chip memory, to be released in the near future.

Other reasons for choosing the MSP430 are various on chip peripherals which come
in handy for research and education and which can be used by expansion boards through



the pin headers: 8 x 12 bit A/D converters, 2 x 12 bit D/A converters, 2 x 16 bit timer
with capture/compare, brownout detector, hardware multiplier, 6 x 8 bit general pur-
pose digital I/O ports and integrated bus protocols for serial communication like 2 x
SPI, 1 x I2C and 2 x RS232. These features allow comfortable usage of external ana-
log and digital components like sensors and actors. The clock frequency is software
adjustable from 32 kHz up to 8 MHz using additional external crystals or an internal
DCO. We don’t recommend using the internal DCO because it increases power con-
sumption and is subject to considerable fluctuations upon temperature changes.

As wireless communication unit we have chosen the ChipCon CC1100 radio trans-
ceiver [9] whose base frequency is adjustable between 300 to 348, 400 to 464 and 800 to
928 MHz. Its supply voltage ranges from 1.8 to 3.6 V, so battery operation is adequate.
Beside one idle mode it offers one TX and two RX modes. A special feature for which
we selected the CC1100 is the Wake-on-Radio RX mode which can be configured to re-
quire only 1.8 pA and upon detection of a preamble automatically enters full RX mode
(14.5 mA). Beside this optimal DC characteristics it supports multi-channel operation
for improved collision avoidance and offers an 8 bit digital received signal strength
indication (RSSI) and link quality indication (LQI) output. This can be used to adjust
TX power (—15to + 10 dBm) for dynamic cell sizes or even to roughly localize the
node relative to its neighbours as proposed in MoteTrack [10] or RADAR [11]. Other
features worth mentioning are the optional 8 bit hardware address check simplifying
energy saving and MAC protocol implementation, the various selectable modulation
formats (see table 1) supporting data rates from 1.2 — 500 kbit/s and the two 64 byte
RX/TX buffers allowing variable packet lengths as well as MCU-independent reception
and transmission. Remarkable hardware specifications like its fully digital design allow
the extremely small footprint, the few required additional electronic components and its
comfortable interface via SPI protocol.

For data storage we use the non-volatile Atmel data flash AT45DB161B [12] with
SPIinterface and 2.7 — 3.6 V supply voltage. Its power consumption is 2 (A in standby
mode, 4 mA while reading and 15 mA while writing. The capacity of 16 Mbit (byte
addressable) is sufficient even for long-term data logging. The reason for selecting this
very device were the two 528 byte data buffers in combination with the ready/busy-
indicator allowing a very smart implementation of an embedded file system that saves
valuable RAM within the MCU [13].

Communication with a PC is optionally available via two RS232 interfaces attached
to the MCU over a two channel signal driver. Since RS232 communication requires
+12 V signal levels and implies wired nodes, it can be disabled by jumpers when low
power operation is mandatory. Thus, except for the supply voltage of the signal driver,
its DC characteristics are mostly irrelevant. We selected the Sipex SP3222E [14] as it
is inexpensive, has a small footprint, offers data rates from 120 to 235 kbit/s, runs at
3 — 5.5V and thus avoids a secondary power source. Its supply current ranges from
1 pA to 0.3 mA. The reason for actually providing a RS232 interface was not only
the additional debug or communication channel but also the possibility to easily at-
tach ready-made devices like GPS modules to SNOW? which are not yet available as
expansion boards.



As the MSP430 provides easy programming and in-system debugging via JTAG
(IEEE1149.1), SNOW? forwards the JTAG signals to a six pin jack. This option can
also be used as communication channel without any extra electronic components.

4 SNOWS circuit design

This chapter will describe the SNOW? board design in detail. Always keep in mind, that
research and education are one of the main application areas of SNOW?. Therefore, we
value flexibility, expandability and convenient debugging higher than small dimensions
and specialization. Of course, a smaller and application specific design can easily be
derived from the existing one.

Initially it must be mentioned, that nearly each of the MSP430’s pins has two exclu-
sive operation modes: it can be used as general purpose (GP) digital I/O or as special
function port like A/D converter, D/A converter or timer. Therefore one must carefully
select which special function to sacrifice for digital I/O. Regarding this, the intercon-
nection between the applied components was designed as follows.

The data flash and the radio transceiver share the same SPI bus as slaves and are
connected to the MSP430 as master over its first USARTO. As SPI is a three wire bus
(in, out, clock) which selects the active component by an extra individual chip select
(CS) signal, five MSP430 ports are required for flash and radio. Three extra pins are
used for signaling ready/busy from the flash and two configurable events from radio to
the MCU. For the sake of flexibility, these three pins can be individually (dis)connected
via jumpers. SNOW? provides a short on-board antenna which will be sufficient for
many applications as well as the possibility to connect an external antenna via SMC
connector.

The RS232 driver is hardwired to both USARTSs of the MCU. To release these pins
for other purposes, the whole driver IC can be deactivated via jumper and thus it wastes
no energy at all. Up to now, the SPI and I>C function of USART] is still unused on-
board and thus available for further extensions.

Power can be supplied to the circuit in two exclusive likewise jumper selectable
ways. The first option enables direct supply without any protection against DC polarity
reversal or overvoltage. It is intended for autonomous battery operation granting the
full voltage range from 1.8 — 3.6 V. The second option is intended for wired power
unit operation. It accepts any input voltage from 4.5 — 20.0 V DC and transforms it
to 3.3 V at max. 800 mA using the DC/DC linear regulator LM1117MP-3.3 [15]. No
doubt this regulator consumes additional power but one gains more flexibility when
battery operation is not desired and obtains both DC protections mentioned above.

The pin headers and the JTAG port are directly connected to the MCU’s correspond-
ing pins for easy accessibility and are left floating with two exceptions: the reference
voltage pins VRef+ and VeRef+ can be grounded via jumpers when not in use. This
takes into account the power saving guidelines as described in the MSP430 manual [7].
The two RS232 jacks are connected to the RS232 driver IC and provide the correspond-
ing £12 V signals when enabled. A reset button is also available.

All remaining electronic components like capacitors, resistors and inductors were
selected in their smallest package available. They are required for IC power supply



stabilization, reference voltages, pull up/down, the radio circuit and the RS232 charge
pumps.

The versatility of this open design was confirmed by the application of SNOW?
in several testbeds so far, e.g. the high-precise ultrasonic localization system SNOW
BAT [16].

5 Hardware extensions

To achieve the goal of modularity, additional hardware can be stacked onto each sensor
node as daughter boards (see figure 3). This allows highly customizable hardware for
almost any application and research area. Furthermore, the board layout offers stacking
of multiple daughter boards at the same time for dynamic configuration. This concept
enables us to avoid placing any sensors directly on the SNOW? main board as this
would restrict its versatility due to preassigned I/O signals that could be used wiser
within some other applications. Besides, we prefer placing sensors where they are sup-
posed to acquire information. Therefore we preserve the option to mount them onto the
case where they are in direct contact with the environment they monitor and connect
them to SNOW? via the expansion headers.

Figure 3. SNOW? with stacked SNOW BAT daughter board

Along with various digital and analog signals, these headers provide three power
lines for increased flexibility in power supply. One power line propagates the primary
3.3 V power to the daughter boards, the remaining two are free for additional supplies
as required by the specific configuration. In this way, several extension boards can share
a single power supply unit easily. Beside we use standard bread boards with 2.54 mm
grid to facilitate fast and cheap prototyping of new daughter boards.

Quite a number of expansion boards are already available or under development: the
MicADUS (Microphone, A/D converters and ultrasonic) extension board for example
provides the possibility to directly attach up to six analog sensors for light, humidity,
pressure, temperature, etc. to SNOW?>’s A/D converters. Due to an acoustic amplifier,



audio applications with a condenser microphone are also realizable with this board.
It also features a circuitry for ultrasonic (US) applications like distance measurement.
First tests showed that a node can perform self localization within the precision of few
millimeters using this expansion (for more information, see [16]).

In the near future a special communication daughter board with Universal Serial
Bus (USB) and Controller Area Network (CAN) bus connectivity can be expected as
well as an extension for coarse outdoor localization, orientation and movement detec-
tion, with GPS, tilt and hall sensors. On the one hand this can increase accessibility via
different communication channels and the accuracy of the node’s localization on the
other hand.

[Sensor Node [[Mica2 MPR410CB]  BTnode  |ESB ScatterWeb] EYES |  Telos | SNow> |
[Developer [[  Crossbow | ETHZurich [ FUBerlin _ |[Univ. of Twente[ UC Berkeley [ Univ. of Wuerzburg ]
[Date 11 2002 | 2004 | 2005 | 2003 | 2004 | 2005 |
Microcontroller unit
IC ATMegal28L ATMegal28L MSP430F149 MSP430F149 [MSP430F1611 MSP430F1611 / F16xx
Speed (M Hz) 7.37 7.37 ? 5 0.4-8 0.4-8
Architecture 8 bit RISC 8 bit RISC 16 bit RISC 16 bit RISC | 16 bit RISC 16 bit RISC
Flash ROM (kB) 128 128 60 60 48 48
RAM (kB) 4 4 2 2 10 10
Power, active mode (mA) 8 8 32 32 4 4
Power, sleep mode (1L A) 15 15 1.6 1.6 2 2
‘Wakeup time (s) 180 180 6 6 6 6
Onboard memory
IC AT45DB041B 6252048U MC 24L.C64 ST M25P40 ST M25P80 AT45DB161B
Type Flash SRAM EEPROM Flash Flash Flash
Non-volatile yes no yes yes yes yes
Interface SPI ? 2c SPI SPI SPI
Size (kB) 512 240 64 512 1024 2048
Power, idle (1L W) 5 ? 0.03 150 150 5
Power, read (mW) 10 ? 0.15 12 12 10
Power, write (m W) 37.5 ? 0.3 45 45 37.5
Primary wireless communication
IC CC1000 CC1000 TR1001 TR1001 CC2420 CCI1100
Interface SPI SPI non-SPI non-SPI SPI SPI
Data rate (kbit /s) 38.4 38.4 19.2 57.6 250 500
Modulation FSK FSK OOK,ASK OOK,ASK 0-QPSK 2FSK,GFSK,ASK,00K,MSK,QPSK
Frequency (M Hz) 433 433-915 868 868 2400 315,433, 868, 915
Hardware address check no no no no yes yes
Digital RSSI/LQI o o o no yes yes
Power, RX (mA) 74 7.4 3.8 3.8 18.8 14.5
Power, TX @ 0 dBm (mA) 10.4 10.4 12 12 17.4 16.1
Low power listen mode (L A) 74 74 1800 1800 - 15
Sleep mode (L A) 0.2 0.2 0.7 0.7 1 0.4
Interfaces / Sensors / Misc
PC Communication RS232 Bluetooth / JTAG| RS232/JTAG | RS232/JTAG USB RS232/JTAG
Integrated sensors no no yes no yes no
Extension pins (incl. JTAG) 51 55 24 14 16 67
Accessible free Digital /0 7 21 8 8 13 41
Accessible free ADC ports ? 2 0 8 6 8
Accessible free DAC ports 0 0 0 0 2 2
Accessible buses SPI I°C SPL I°C SPI - SPI I°C SPI I°C
Accessible DC ports 1 1 1 1 1 1 + 2 (free for expansion)
Recommended OS TinyOS — (TinyOS) — (TinyOS) PEEROS TinyOS SMARTOS (FreeRTOS, TinyOS)
Overall DC/ physical specifications
Size (mm X mm) 32 X 58 32 X 58 ~~ 45 X 54 ~ 32 X 92 32 X 65 50 x 85
Supported operation voltage (V) 2.7-33 330r3.8-5 3-26 3 1.8-3.6 1.8-20
Regulated supply no yes yes no no yes
Power, active mode (mA) 30 ~ 33 12 ? 14 8

Table 1. Node comparison table



6 Comparison to other nodes

As addressed before, some sensor boards already exist. Nevertheless, we decided to
develop a new node from scratch for a better fulfillment of our demands from section 2.
Table 1 compares SNOW? in detail to five other nodes available: Mica2 [17], BTnode
[18], ESB [19], EYES [20] and Telos [21]. The named sensor nodes are somewhat
similar: beside a microcontroller as central unit they all have a flash memory for data
storage and a radio for wireless communication. For PC communication they all provide
more or less different interfaces. But in detail, there are subtle distinctions.

The first remarkable feature is the MCU. Depending on the application, SNOW? can
be customized not only with any 64 pin MSP430x16xx controller providing 48 — 60 kB
flash ROM and 2 — 10 kB RAM but even with TI’s pin-compatible successor MCU
with 1 MB memory without any modifications on the PCB design (cf. section 3). Com-
pared with the ATMegal28L [22] used on Mica2 and BTnode, the MSP430 has a very
short wake up time of 6 ps from idle mode and remarkable low power consumption in
all operation modes. Furthermore SNOW? uses an external crystal instead of the inter-
nal DCO for a more precise clock generation. Moreover, the MSP430x16xx is capable
of driving analog devices due to its D/A converters qualifying only SNOW? and Telos
for controlling analog actors directly.

Concerning the onboard memory, ESB comes with a very energy efficient EEP-
ROM. However we prefer flash technology despite of its higher energy consumption
because it is available with faster access times and bigger sizes which enables efficient
storage of a large amount of sensor data. A volatile SRAM memory as applied on BTn-
ode was never considered, because in case of power failures all data will be lost. Thus,
we decided to use a non-volatile flash like Mica2 does, but with 16 Mbit.

As wireless communication is very important but also very expensive within a
WSN, an energy efficient radio transceiver is mandatory. The TR1001 [23] used by
ESB and EYES is most efficient in pure RX mode but very inefficient in low power
listen mode and provides no interface natively supported by the MCU. As successor
to the CC1000 [24] (used by Mica2 and BTnode), the CC1100 has a similar energy
profile with a much improved low power listen mode which will be used extensively in
the SMARTNET MAC protocol (see section 7). It also offers a higher data rate, more
modulation modes and digital RSSI/LQI. Its automatic hardware address check allows
systematic waking up the MCU upon packet reception.

The dimension of SNOW? is rather large, therefore it provides the most complete
extension ports making all pins of the MCU accessible for debugging and expansion.
Thus, SNOW? offers the largest number of buses, digital /O, ADC and DAC ports.
Like BTnode and ESB, SNOW? can regulate its primary power supply on demand
and additionally propagates up to three different DC voltages to the extension ports.
This simplifies adaptation of SNOW? via daughter boards: if there are changes in the
environmental setup it is sufficient to replace or upgrade the concerned daughter boards
and to readjust the software for the given sensor node. These features make SNOW?
more practical for all-purpose applications than the other nodes shown.



7 Operating system and software guidelines

Some sensor nodes like SNOW? support simultaneous usage of various sensors and
actors. Thus, the coordination of all installed modules can be hard to manage. Espe-
cially on sensor nodes where attached devices often share special units of the MCU,
this problem is hard to solve as different timing constraints, exclusive access, etc. must
be handled. Manual and application specific coordination may be still possible within
small and monolithic programs. Nevertheless, this is unfeasible in large applications
where several software modules like drivers and tasks need to cooperate and still re-
quire sufficient resources and sometimes even hard real time operation. In this case, an
operating system is mandatory to provide an adequate task management and a sophisti-
cated hardware abstraction layer. But at the same time, an operating system for sensor
nodes needs to be minimalistic due to the limited resources available. Critical factors
like CPU load, ROM and RAM usage must be considered carefully when designing a
kernel to run on a microcontroller. Obviously, the implementation of a large scale full
featured operating systems for microcontrollers is impossible.

This section introduces the minimalistic operating system SMARTOS (Small real-
time Operating System) which emanated from YAOS [25]. It offers outstanding fea-
tures like preemptive multitasking under hard real time constraints, high energy effi-
ciency, event handling, high resolution timestamping and advanced interrupt handling.

After this short motivation basic concepts of our operating system are explained in
7.1. Section 7.2 deals with the timing constraints of SMARTOS, whereas section 7.3
delivers insight to its network layer. Table 2 gives a short survey over already available
operating systems like FreeRTOS [26], TinyOS [27] and SOS [28] for MSP430 based
embedded systems which therefore would run on SNOW?, too.

[Features [freeRTOS| TinyOS [ SOS [ SMARTOS
Compiler mspgeec  |nesC@mspgee| mspgec mspgcc
Uses assembly inline inline inline inline
License GNU GPL free free none, yet
Binary size 4.4 kB unknown |[> 1.6 kB <1.8kB
Preemptive scheduler yes no yes yes
Cooperative scheduler|  yes yes yes yes
Real-time yes no yes yes
Semaphores yes yes yes yes
Events yes yes yes yes
Critical sections yes yes yes yes
Available drivers no few no few
Message queues yes unknown |unknown yes
Trace visualization yes unknown |unknown |under construction

Table 2. Some existing operating systems for MSP430



7.1 SMARTOS concepts

Basic functions and requirements for (real-time) operating systems can be found in [29].
But because of the MCU’s little memory, SMARTOS does not support some features
well-known by full-grown operating systems, e.g. memory protection, dynamic mem-
ory allocation and dynamic task creation. Instead, it supports preemptive tasks with
runtime adjustable priorities (up to 255 levels) and priority ceiling, static shared mem-
ory and event-based synchronization. It also provides dynamic resource management
to coordinate the access of concurrent tasks to available buses and devices. That’s why
SMARTOS offers the following concepts (cf. figure 4):

Time management is realized by maintaining a 64 bit timeline. Due to the 8 MHz
crystal on SNOW?, a clock cycle takes 0.125 us. SMARTOS provides a very pre-
cise time resolution of 1 us by internally using a timer of the MSP430 as clock
generator.

Events are used to manage and synchronize tasks. They can be triggered by other tasks,
resources and interrupts. By waiting for an event, a task will be suspended until the
event occurs or a timeout is reached. This avoids busy waiting loops and MCU time
can be reassigned to another task. If all tasks are idle, SMARTOS switches to low
power mode. The timeout can be specified absolute or relative to the timeline. To
manage scheduling each event maintains an individual task queue, sorted by task
priority. If an event takes place, two possible things can happen:

1. The first task in the queue will consume the event and resumes.

2. If no task is waiting for the event, it will be saved for future consumption. This
means, that the next task waiting for this event immediately consumes it and
will not be suspended.

Resources coordinate the mutual exclusion of tasks preventing the simultaneous usage
of devices like timers or buses. Their allocation and deallocation is monitored by
events. Both must be done explicitly by the same (owner) task. Furthermore priority
ceiling among the tasks waiting for a resource avoids thwarting. If a task T; with
priority P; wants to use a resource already allocated by another task Ty with priority
P> < Py, the priority Py of task T will be increased to P; temporarily until To
releases the resource.

Tasks are preemptive non-terminating program sections managed by the operating sys-
tem. They are defined by an entry function, an initial priority and a dedicated stack
area of fixed size. Before compilation, this stack size can be calculated by auto-
matic analysis of the task’s source code enriched with related annotations like the
maximum number of loop iterations. Task scheduling relies on the event system as
described above. A task can be suspended by other tasks with higher priority or
suspend itself by waiting for an event, a resource or sleeping for a specified amount
of time.

IRQ handling is greatly simplified by introducing software interrupts in addition to
hardware interrupts. These interrupts automatically demultiplex hardware inter-
rupts shared by several peripheral components. In general, developers can imple-
ment handlers for both types of interrupts. Furthermore, SMARTOS automatically
saves the timestamp whenever an interrupt occurs (cf. section 7.2).
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Figure 4. SMARTOS - overview

7.2 SMARTOS timings

Since our goal was to design a real-time system, SMARTOS offers fast task switching
and low interrupt latency of 0.75 ps, required for saving program counter (PC) and
state register (SR) of the MSP430. Everytime an interrupt occurs, the current timestamp
is saved by the operating system within 7.5 ps. As this delay is constant it will be
automatically compensated by SMARTOS.

Whenever a context switch happens, the dispatcher saves the context of the current
task, chooses the next task from the waiting queue and restores its task context. All in
all, this takes only about 20 ps. Thereby, SMARTOS is a minimalistic operating system
which grants preemptive multitasking and is capable of real-time operation.

7.3 Usage of SMARTOS, taking SMARTNET as example

SMARTNET is the wireless MAC protocol of SMARTOS and links the operating sys-
tem and the radio transceiver. It automatically manages the successful transmission of
packets by listening for a free transmission channel. Application IDs work like TCP
ports and allow SMARTNET to deliver packets directly to a task registered for this ID.
The following listing demonstrates the simple usage of SMARTOS and SMARTNET.
The example application consists of two tasks, one for periodically sending the broad-
cast message "Hello World!" and the other for receiving messages. The whole
application is implemented as follows:

First, both tasks are declared with a priority of 200. Their stack size will be com-
puted right before compilation (lines 1-2). Then, two SMARTNET message buffers of
maximum size are allocated (lines 4-5). Two events (lines 7-8) are defined to indicate
successful transmission and reception of messages respectively. Both tasks (lines 10-25
and 27-38) initially configure their message buffers before entering an infinite loop. The
transmission task for example instructs SMARTNET to send the message (line 19) and
then suspends by waiting for the successful transmission event (line 20). The receiving
task in contrast is suspended until a reception event occurs, whereon the task displays
some information about the received message on the serial console (lines 34-36). The



main function (lines 40-44) starts the whole application by initializing a serial debug
console and the operating system environment along with the tasks (line 42).

1 | SMARTOS_DECLARE_TASK (RadioTx, 200, /+<computeStackSize ()>*/);
> | SMARTOS_DECLARE_TASK (RadioRx, 200, /+<computeStackSize ()>*/);

4 | SMARTNET_DECLARE_BUFFER (RadioTxBuffer, SMARTNET_MAX_ DATA);
5 | SMARTNET_DECLARE_BUFFER (RadioRxBuffer, SMARTNET_MAX DATA);

7 | SMARTOS_DECLARE_EVENT (RadioTxBufferDone) ;
8 | SMARTOS_DECLARE_EVENT (RadioRxBufferDone) ;

10 | SMARTOS_TASKENTRY (RadioTx) {
1 SMARTNET_INIT_BUFFER (RadioTxBuffer);
12 strcpy (RadioTxBuffer.data, "Hello World!");

13 RadioTxBuffer.event = &RadioTxBufferDone;

14 RadioTxBuffer.datalen = strlen(RadioTxBuffer.data);
15 RadioTxBuffer.appID =1;

16 RadioTxBuffer.flags = SMARTNET_BF_BROADCAST;

18 while (1) {

19 SmartNET_SendPacket (&§RadioTxBuffer) ;

20 waitEvent (&§RadioTxBufferDone) ;

21 if (RadioTxBuffer.state != SMARTNET_BS_TX_ OK) {
2 /+ handle TX error +/

23 }
2 }

5 |}

26
27 | SMARTOS_TASKENTRY (RadioRx) {

28 SMARTNET_INIT_BUFFER (RadioRxBuffer);

29 RadioRxBuffer.event = &RadioRxBufferDone;
30 RadioRxBuffer.appID = 1;

3

32 while (1) {

33 SmartNET_ReceivePacket (&§RadioRxBuffer) ;

34 waitEvent (&§RadioRxBufferDone) ;

35 MSG ("RX,_ from_0x%04X_at,_time_[%$1lul\n",

36 RadioRxBuffer.src, RadioRxBuffer.timestamp) ;
37 }

38 |}

39

4 |int _ attribute_ ((noreturn)) main (void) {

41 init_uart (UART_CFG_115200);

4 smartos_init_environment () ;

43 run_smartos () ;

a4 |}

Transmission and reception of radio messages in SMARTOS using SMARTNET



8 Applications

On the one hand, SNOW? is ideal for commercial applications concerning its small,
customizable and energy efficient design along with its real-time capabilities and its
various communication channels. On the other hand, modularity as well as easy and
cheap debugging and prototyping enables SNOW? for research and educational issues.

Recommended fields of application are role-based scenarios where differently equip-
ped nodes cover distinct areas of a comprising complex task. But also the activation of
actuators like stepping motors is possible, due to the available D/A converters. One
imaginable scenario could be the supervision of territories and buildings for security,
informational and controlling aspects. This is feasible even in dangerous and misan-
thropical environments where no communication infrastructure is available and ad hoc
networking is necessary. Moreover, SNOW? is easy to adapt to the requirements given,
which is especially interesting for task forces like search and rescue services or fire-
fighters employing the node in a large variety of situations.

For research and education purposes, SNOW? provides serial interfaces and JTAG
for easy accessibility, which allows a quick deployment and analysis of several em-
bedded software and middleware concepts. Distributed algorithms as well as several
communication protocols can be explored. Functionality of miscellaneous sensors and
actors can be studied as well with SNOW? by means of its stackable design and rapid

prototyping.

9 Conclusion and future work

In this paper we have initially defined our demands on nodes of a WSN. According
to these requirements we developed the SNOW? node, whose hardware (sections 3,
4) and software (section 7) was described in detail. We have compared it in depth to
some other sensor nodes available (section 6) and outlined its advantages, especially its
ultra low power consumption, modularity and extensive connectivity (section 5). Some
examples of particularly suitable applications for SNOW? in commercial and research
areas close this paper.

The successful establishment of a wireless sensor network using SNOW? and the
real-time operating system SMARTOS finally enables us to evaluate theoretical assump-
tions under hard real-world conditions.

We are currently researching on theoretical problems like self-organizing and fault-
tolerant systems. Underlying aspects will be network protocols, routing, time synchro-
nization, power saving concepts, localization and embedded systems software design
regarding efficient local and distributed algorithms. Future work will also lead to sev-
eral daughter boards for sensors and actors in addition to those mentioned above. We
will also look for hardware improvements and miniaturization of the SNOW?> main
board.

Our long-term objective is the specification of hardware and software requirements
leading to a mass market system-on-a-chip (SoC) design for generic WSN nodes.
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