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Abstract
Desynchronization is a biologically inspired primitive

[8] for periodic but temporary exclusive access to a shared
resource, like the transmission medium. In this paper,
we recapitulate the single-hop desynchronization algorithm
DESYNC [5, 2, 6] for Wireless Sensor Networks (WSNs) and
identify its lack of handling hidden nodes in multi-hop envi-
ronments. We explain in detail our decentralized and self-
organizing multi-hop extensionEXTENDED-DESYNC, solv-
ing the hidden node problem although it uses just locally
available information. We further inspect several scenarios
and topologies to prove convergence of our algorithm and
to demonstrate its robustness and flexibility against dynamic
changes within multi-hop Wireless Sensor Networks, like
adding or removing nodes. We thus show thatEXTENDED-
DESYNC desynchronizes well in spite of hidden nodes. We
finally outline a few useful add-ons for our algorithm and its
possible fields of application.

1 Introduction
Main characteristics ofwireless sensor networks(WSNs)

are restrictions on hardware, e.g. low computational power
or just little memory, as well as the ability to wireless com-
munication. That’s why several protocols formedium access
control(MAC) already exist, mostly classified as contention-
basedcarrier sense multiple access(CSMA) or as schedule-
basedtime division multiple access(TDMA). We focus on
TDMA protocols, which divide the radio channel into so
calledtime slotswith exclusive medium access for a certain
node. To achieve this, most TDMA protocols like Z-MAC
[4] or TRAMA [9]
• provide a base node as clock master propagating a

global clock for synchronization of the time slots,

• need prior knowledge about the schedule of the time
slots,

and thus
• may lose bandwidth in case of unused slots, and

• may not be able to add or remove nodes modestly.

Instead of an explicit network synchronization by a mas-
ter node, Degesys et al. introduced in [5] the biologically
inspired desynchronization primitive [8] as TDMA proto-
col for single-hop networks. That means to equidistantly
spread out the time slots of all participating nodes in a self-

organized and decentralized manner. Desynchronization was
also implemented successfully for periodic resource schedul-
ing like scattering of wake-up times [1]. The convergence of
the DESYNC algorithm for single-hop networks was proved
in [2], for multi-hop networks in [6]. The single-hop version
was already used within a real-world application of an RSSI-
signature-based indoor localization system in [7], however
the multi-hop extension does not solve the hidden node prob-
lem and thus is not yet practical for real-world scenarios.

That’s why we developed a serviceable multi-hop ex-
tension of the DESYNC algorithm: EXTENDED-DESYNC,
which operates self-organized and indeed can handle hidden
nodes within multi-hop networks. The main idea is utilizing
locally available information about the network topology to
uncover formerly hidden nodes. Furthermore, we prove its
convergence and analyze the functionality of our algorithm
at some complex, but realistic network scenarios.

This paper is organized as follows: In the next section we
briefly introduce thehidden node problemand describe the
DESYNCalgorithm as TDMA protocol for single-hop WSNs
together with a first idea of a multi-hop extension. In sec-
tion 3 we first explain our multi-hop extensionEXTENDED-
DESYNC of the DESYNC algorithm and its handling of hid-
den nodes in detail, and prove afterward its convergence. An
analysis of our algorithm’s behavior while integrating nodes
into several network scenarios follows in section 4. A con-
clusion and an outlook to future work in section 5 closes this
paper.

2 Related Work
In this section we first outline thehidden node problem

and then define the framework for the desynchronization al-
gorithms used within this paper. Afterwards we recapitulate
the original DESYNC algorithm and its properties for single-
hop and multi-hop networks.

2.1 Hidden Node Problem
Suppose, without loss of generality, a wireless (sensor)

network of three nodesL, M andR, so that nodeL can inter-
act with nodeM, but is out of range of nodeR, whereas node
R can also interact with nodeM, but is out of range of node
L (see Fig. 1). If nodeL wants to transmit data to nodeM
and at about the same time nodeR tries to send something
to nodeM, too, both radio packets collide at nodeM, which
then receives corrupt data. Because neither nodeL nor node
R can overcome this packet collision bycarrier sense(CS),



Figure 1. Hidden Node Problem

both nodes are hidden from each other – therefrom the name
hidden node problem.
2.2 The DESYNC Algorithm ... in General

Next we sketch the framework generally required by the
desynchronization algorithms used within this paper. These
algorithms are rather simple and only depend on local infor-
mation, but nonetheless form a quite complex behavior of the
overall system. They do rely on neither a global clock nor an
a priori known schedule. Hence, to some degree they are
tolerant towards dynamical changes of the network topology
and thus exemplify quite well the emergence of a distributed
system by self-organization.

Again, desynchronization is a biologically inspired primi-
tive [8] for the equidistant distribution ofoscillators, e.g. pe-
riodically transmitting sensor nodes. So, the network is com-
posed of a set of nodesN with symmetric communication
links, where each node oscillates at an identical frequency
ω within a periodT = 1

ω . However, the periodT must be
sufficiently long, e.g. for the single-hop versionT must sup-
port alln= |N| possible members of the network. Each node
has a unique identifieri. The phaseφi ∈ [0.0,1.0] of a node
i denotes the elapsed time since its last transmission relative
to T. For exampleφ5 = 0.9 means, that node number 5 has
already finished 90% of its current period. When nodei fin-
ishes its period, i.e.φi = 1.0, it broadcasts a so calledfiring
packetand immediately resets its phase toφi = 0.0. The set
of all one-hop neighbors of nodei is

N1(i) = { j : i received broadcast fromj}, (1)

and the column vector
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denotes the system state of alln nodes. An update of the
system state is only required each time a node broadcasts its
firing packet.

For further understanding, two other nodesp(i) 6= i and
s(i) 6= i are important for the following algorithms:
• nodep(i) broadcasts its firing packet justbeforenodei

and thus is calledprevious phase neighbor, whereas

• nodes(i) broadcasts its firing packet justafter nodei
and thus is calledsuccessive phase neighbor.

Figure 2. Snapshots of the progress of desynchronization

To determine a more appropriate firing phaseφ′i according
to an equidistant distribution, nodei must first calculate the
midpoint of its phase neighbors using thedelta phase

∆i, j = φ j −φi .

Unfortunately, the information about the phase of the previ-
ous phase neighborφp(i) might be stale, sincep(i) also tries
to determine a more appropriate firing phaseφ′p(i) and thus
could have changed its phase already – depending on the
phase neighbors ofp(i). According to [2], this stale infor-
mation won’t affect the functionality of the DESYNC algo-
rithm, but slows down a bit its convergence rate. After the
broadcast ofi’s successive phase neighbors(i), nodei can
calculate the midpoint of its phase neighbors as

mid(φs(i),φp(i)) = φi +
∆i,p(i)−∆s(i),i

2

=
φp(i) +φs(i)

2
.

(2)

Finally, the new firing phaseφ′i of nodei can be estimated
by itself as

φ′i = (1−α) ·φi +α · mid(φs(i),φp(i)). (3)

The jump size parameterα ∈ (0.0,1.0) regulates, how fast a
node moves toward the assumed midpoint of its phase neigh-
bors, e.g.α = 0.0 would mean no movement at all, whereas
α = 1.0 forces straight movement onto the midpoint under
unstable emergence of new configurations (cf. [1]). Ade-
quate values for the jump size parameter areα = 0.95 and
α = 0.9, according to [5], and [6] respectively.

Figure 2 exemplifies the progress of the desynchroniza-
tion: on the left, nodei is ready to change its phase, because
its successive phase neighbors(i) is broadcasting its firing
packet. That means, the calculation of the next firing phase
φ′i of node i can be made soonest whenever its subsequent
one-hop neighbor1 broadcasts its firing packet. Whereas on
the right, the system of five nodes has reached a stable state,
because all nodes are equidistant from their particular phase
neighbors. Convergence to the stable state ofdesynchrony
(cf. [5]) is achieved, if each node has the same distance to
its phase neighbors and thus the transmission times do not
change anymore – unless the system changes.

1Especially when usingEXTENDED-DESYNC for multi-hop
networks, the subsequent one-hop neighbor of a nodei is neces-
sarily not identical to the successive phase neighbor of nodei.



Figure 3. Desynchronization ofP4 topology by DESYNC

2.3 ... within Single-hop Networks
The first version of the DESYNC algorithm described in

[5, 2] just considers single-hop networks. Here, the node
identifiers – without loss of generality – are numbered con-
secutively so that 1≤ i ≤ n holds. Furthermore, the phase
neighbors of a nodei simply are
• nodep(i) = i −1 as previous, and

• nodes(i) = i +1 as successive phase neighbor.

The midpoint computation works in the same way as spec-
ified in section 2.2. The stable state of desynchrony is
reached, if

∆i,p(i) =
1
n

is true for anyi.
This single-hop approach converges well, as proved in

[5]: the problem of desynchronization was adapted to the
graph coloring problemand by means of it, convergence to
a stable state was shown for arbitrary system initial states, as
well as stability, i.e. if the system reaches a stable state,this
state will be changed not until system topology is changed.

2.4 ... within Multi-hop Networks
Since single-hop networks cover just a small field of

real-world applications, the developers of the single-hop
DESYNC algorithm tried it on multi-hop networks [6]. The
main difference is the identification of the phase neighbors
of a nodei:
• p(i) = argmin

j∈N1(i)
∆i, j as previous phase neighbor, and

• s(i) = argmax
j∈N1(i)

∆i, j as successive phase neighbor.

The new phaseφ′i of node i is then calculated according
to equation 3, whereα ∈ (0.0,1.0) again is the jump size
parameter (cf. 2.2). If each nodei satisfies the equa-
tion ∆i,p(i) = ∆s(i),i , the stable state of desynchronization is
reached here.

With it, convergence to a stable state also was proved, but
not all stable states are valid and implementable, because to-
tal message loss can emerge within some scenarios due to
hidden nodes. Especially in path graph2 topologiesPn this
multi-hop version of the DESYNC algorithm generates im-
proper and impractical phases for all nodes! For example
Fig. 3 shows aP4 topology and the resulting desynchrony.

2Two nodes have degree 1, andn−2 nodes have degree 2.

Unfortunately,φA = φC andφB = φD and thus all messages
will be lost due to collisions.

To overcome these defects, one proposal made was not to
look at the communication graph but at the constraint graph
of the network – however that’s exactly the challenge: how
to gain the constraint graph from just local view. We met
the challenge and thus present our multi-hop approach for
desynchronization including an answer for the hidden node
problem in the following section.

3 Multi-Hop Extension EXTENDED -DESYNC
According to [6], the challenge is how to gain the con-

straint graph. Our main idea is to use additional and locally
available information about the current network topology for
an equidistant spread out of the sensor nodes while solving
the hidden node problem. Our approach should converge,
of course, but be robust against topological changes, also.
That’s why we present our algorithm in the next section and
demonstrate its convergence and fault-tolerance afterward.

3.1 TheEXTENDED -DESYNC Algorithm
First of all, each node requires a unique identifier and

symmetrical links between nodes. In addition to the defi-
nition of the set of one-hop neighborsN1(i) from equation 1,
we define the set of two-hop neighborsN2(i) of nodei as

N2(i) = { j 6= i : ∃k∈ N1(i) : j ∈ N1(k)}∪N1(i).

Because our algorithm shall work fine in multi-hop net-
works, the periodT must be now long enough to support the
maximum set of possible two-hop neighbors max

i∈N
(|N2(i)|).

With it, we can construct the desired constraint graph and
define the phase neighbors of nodei as
• p(i) = argmin

k∈N2(i)
φk as previous phase neighbor, and

• s(i) = argmax
k∈N2(i)

φk as successive phase neighbor.

Now nodei simply needs to know all its two-hop neigh-
bors and their relative phases. That knowledge can be
gained, if every one-hop neighborj ∈ N1(i) broadcasts
within its firing packet the current list of its one-hop neigh-
borsN1( j) together with their phases corresponding to the
point of view of senderj. According to listing 1, every time
node i receives such a broadcast from one of its one-hop
neighbor j ∈ N1(i) (line 1), it first checks, whether nodej
is yet registered as one-hop neighbor (line 2). If not, it re-
moves nodej from the list of two-hop neighborsN2(i) (line
3) to be on the safe side, and then addsj to its one-hop neigh-
borsN1(i) (line 4). Anyway, nodei refreshes its information
about the phase of nodej (line 6): because nodej just sent
its firing packet at phaseφ j = 0, nodei calculates the delta
phase as∆ j,i = φi . This delta phase is now subtracted from
each phase of any nodek ∈ N1( j) as well as from nodej ’s
phase to adapt all phases relative toi’s point of view (cf. line
12). Of course, if the resulting relative phase is less than 0, it
has to be normalized again by adding 1. Afterwards, nodei
matches the received listN1( j) with its own,N1(i), and reg-
isters yet unheard nodes as two-hop neighbors: each element
k of the received listN1( j) (line 7) is added to the two-hop
neighborsN2(i) (line 10), if nodek is not already a member



Figure 4. Nodei joins the network, filling a time lag

of the list of one-hop neighborsN1(i) (line 9). In any case,
nodei also adapts the phase of nodek (line 12), as already
described above.

1 receiveFiringPacketFrom( j);
2 if ( j 6∈ N1(i)) {
3 removeNodeFrom( j, N2(i));
4 addNodeTo( j, N1(i));
5 }
6 adaptPhaseOf( j);
7 for (k∈ N1( j)) {
8 if (k 6= i) {
9 if (k 6∈ N1(i)) {

10 addNodeTo(k, N2(i));
11 }
12 adaptPhaseOf(k);
13 }
14 }

Listing 1. List operations of nodei after receiving a firing
packet from its one-hop neighbor j

Please note, that if a phase neighbor is atrue3 two-hop
neighbor of nodei, its current phase can not be measured by
nodei itself anymore. But even so,EXTENDED-DESYNC is
able to handle such stale information, which will be updated
at the next period. That’s why nodei can then compute its
more appropriate transmission timeφ′i according to equation
3 – just the convergence rate may slow down a bit. Only
now, nodei can avoid collisions with one-hop neighbors, but
also keeps track of its two-hop neighbors, which indeed are
all potential hidden nodes. Next, we prove the convergence
of our EXTENDED-DESYNC algorithm.

3.2 Convergence ofEXTENDED -DESYNC
In contrast to the proof of convergence of the DESYNC

algorithm, we do not try to convert the problem of desyn-
chronization into the problem of graph coloring, but we are
geared to the elastic resilience model. There are some re-
quirements to be fulfilled – a few of them were already men-
tioned in 2.2:
• First of all, the settling time of the desynchronization

algorithm shall be minimal, i.e. produce as few as pos-
sible collisions. Therefore, CS is mandatory every time
before a node broadcasts a packet. At least, this reduces
collisions with one-hop neighbors.

3Remember thatN1(i) ⊆ N2(i). So, nodej is a true two-hop
neighbor of nodei, if j ∈ N2(i), but j 6∈ N1(i).

Figure 5. The example from Fig. 2 as resilience model

• The periodT must be large enough. For our algorithm
the periodT has to holdT > max

i∈N

(

|N2(i)|
)

·∆tTX ·τ, i.e.

the maximum cardinality of any node’s two-hop neigh-
borhood times the duration of a single packet transmis-
sion∆tTX times a safety factor4 τ = 1.5.

• A joining nodei selects its first time of firing in such
a manner to fit in-between the time lag∆tlag of one of
its one-hop neighborsj ∈ N1(i) and the nodek∈ N2(i),
which is subsequent toj, but even must not be known
by j (cf. Fig. 4). This way, the one-hop neighbor
j can detect the additional overlapping packet from
node i using CS. Nodej thus defers its own firing
backwards, because the time lag between its firing and
the firing of its successive neighbors( j) ∈ N2( j) –
which may be a two-hop neighbor and thus can not
detect an overlapping packet ofj by using CS – is large
enough per definition ofT. This procedure works fine,
since the joining nodei listens for at least one period to
become familiar with its neighborhood.

With it, we can define an elastic resilience model which
complies to ourEXTENDED-DESYNC algorithm: All ob-
served nodes are arranged on a circle of periodT so that
each nodei is connected with its phase neighborsp(i) and
s(i) via springs, cf. the left side of Fig. 5. Keep in mind that
the phase neighbors can be one hop as well as two hops away
from nodei. However, phase changes of two-hop neighbors
emerge after two periods, of one-hop neighbors already af-
ter one period. That’s why two-hop phase neighbors can be
treated as one-hop neighbors with a just delayed exchange
of information. Hence, it is legitimate not to distinguish
between one-hop and two-hop neighbors for our resilience
model, but to place them all along a single circle. Both types,
nodes as well as springs, move frictionless solely along the
circle and there is no external force at all. All springs within
this elastic resilience system are identical in construction,
especially they all have an equal spring constantk and an
identical, unstretched lengthl0. Besides, the springs are con-
nected in series, trying to decrease their potential energyby
returning to their equilibrium position. This static equilib-
rium looks like the right side of Fig. 5 and exactly complies
with the stable state of desynchrony. After settling time, the

4The safety factorτ assures, that the time lag∆tlag between two
successive firing packets is always greater than half the duration of
a single packet transmission∆tlag > 0.5·∆tTX – as long as there is
space for at least one more node to join.



stable state has the lowest potential energyU of all springs.
It is sufficient to show that ourEXTENDED-DESYNC algo-
rithm also results in such a stable state, because every node
holds the highest possible delta phase to its phase neighbors.

Assumingm nodes – and som springs – with 1≤ i ≤ m
along a circle as described above, the potential energyUi
stored in springi is

Ui =
1
2

kix
2
i ,

whereki denotes the spring constant andxi their displace-
ment. With it, the potential energyU of all m springs sums
up to

U =
1
2

m

∑
i=1

kix
2
i .

Because all springs have an arbitrary but equal spring con-
stantk, i.e. ki = k for all i, we choosek = 2 and obtain

U =
m

∑
i=1

x2
i . (4)

A remarkable observation for the resilience system is, if
the whole system is translated (counter)clockwise along the
circle without changing the relative distances of all nodes, no
changes in energy will result. Paying attention to the cross-
ing of the endpoints of the phase interval, this observation
also holds for the network model. Now let us consider the
displacementxi as the delta phase∆s(i),i = φi −φs(i) between
nodei and its successive phase neighbors(i). Please keep in
mind, that you usually have to add 1 to the resulting phase
to stay consistent, if the delta phase crosses an endpoint of
the phase interval. We cope with that difficulty due to our
observation above by translating the whole system along the
circle in such a manner that the phase of the examined node
i will be φi = 0, if i deals with its previous phase neighbor
p(i), andφi = 1, if it deals with its successive phase neighbor
s(i). Thus equation 4 can be modified to

U =
m

∑
i=1

(φi −φs(i))
2

=
m

∑
j=1
j 6=i

(φ j −φs( j))
2

+(φi −φs(i))
2 +(φp(i)−φi)

2
.

A sufficient condition for the stable state of our system is,
that the difference in energy, when a single nodei moves
while all other nodesj 6= i remain unchanged, can be ob-
tained by the partial derivative of the total potential energy
U with respect toφi :

∂U
∂φi

= 2(φi −φs(i))−2(φp(i)−φi). (5)

After some settling time, the elastic resilience system entered
a stable state, as soon as there is no more change in energy.
Thus, it is a necessary condition to have a minimum differ-

ence of energy, that

∂U
∂φi

= 0. (6)

This complies with the stable state of our algorithm, where
nodei doesn’t want to change its phase any more. That is,
when the phase of nodei equals the midpoint of its phase
neighbors, because from equation 5 and 6 follows

φi =
φp(i) +φs(i)

2
,

which indeed equals equation 2 – a central term within all
desynchronization algorithms mentioned within this paper.
So far, we showed that the elastic resilience system complies
well with our EXTENDED-DESYNC algorithm and we char-
acterized the stable state of that system.

Such a stable state exists, it will be attained, if the changes
of the total potential energy of subsequent states is strictly
monotonic decreasing. Thus, we show

∆U = U ′−U < 0, (7)

whereU ′ denotes the potential energy of allm springs after
just nodei changed its phase fromφi to φ′i , while again all
other nodesj 6= i remain unchanged. Due to our translation
of the whole system along the circle, we insertφi = 0.0 into
equation 3, and can use the following substitution

φ′i = α ·
φp(i) +φs(i)

2
to prove equation 7 as

∆U =
[

(φ′i −φs(i))
2 +(φp(i)−φ′i)

2
]

−
[

(φi −φs(i))
2 +(φp(i)−φi)

2
]

=
(

α ·
φp(i)+φs(i)

2 −φs(i)

)2
+

(

φp(i)−α ·
φp(i)+φs(i)

2

)2

−
(

φi −φs(i)
)2

−
(

φp(i)−φi
)2

Here, we get two possible solutions

∆U1 = −
1
2

(

2φi −
(

1− (α−1)
)(

φp(i) +φs(i)
)

)2
and

∆U2 = −
1
2

(

2φi −
(

1+(α−1)
)(

φp(i) +φs(i)
)

)2
.

But for both∆Ux with x∈ {1,2} holds

∆Ux < 0,

and thus

∆U = U ′−U < 0.

Consequently, the convergence of ourEXTENDED-DESYNC
algorithm is proved. But there remain some deficiencies to
be remedied, so we’ll have a closer look at them in the next
section.
3.3 Further Observations

Due to our experiences with real-world implementations
we observed strange occurrences, which aren’t totally satis-
fied by the requirements of ourEXTENDED-DESYNC algo-
rithm from section 3.2, but which need additional support.



Figure 6. The path graph topologyP2

That’s why we have a closer look at the impact of concur-
rently starting nodes in 3.3.1, the possibility of collision de-
tection by the polluter in section 3.3.2, and unreliable links
due to reduced transmission power in 3.3.3.

3.3.1 Concurrent Start-up

If a node doesn’t receive any other node since start-up,
maybe a neighboring node broadcasts concurrently and thus
may cause collisions. For example, consider the very simple
path graph topologyP2 of two nodesA andB, where nodeA
is within the transmission range of nodeB – and vice versa.
Both nodes fulfill the requirements of section 2.2 and 3.2,
which briefly are

• unique identifiers,

• symmetric communication links,

• a periodT of sufficient length,

• both nodes use CS before transmission, and

• the first time of broadcasting the firing packet is
selected by each node according to section 3.2.

However, if both nodes start at the same time, they listen
for one periodT, and – for lack of further neighbors – broad-
cast their (first) firing packet concurrently, which causes col-
lisions at each node. Because no accurate firings of further
neighbors were received, each node assumes to be alone and
thus listens again for one periodT. Once more, no other
neighboring nodes were detected and thus again nodesA
andB broadcast their firing simultaneously, causing a colli-
sion. That’s why, each node still assumes to be the only node
within the network and listens once again for one periodT.
In the absence of neighbors, nodeA and nodeB again fire
simultaneously, and so on. As long as there is no clock drift
or topology change, both nodes still broadcast concurrently
and never detect each other (cf. left side of Fig. 6).

For this reason, some sort of randomness is mandatory.
Here, we install a (pseudo) random number generator, e.g.
that one described in [3], using the node’s unique identi-
fier as seed to produce random numbers. Such a random
number just has to be transformed into a period of time
Trand ∈ [0.0,T]. The complete back-off strategy at a node’s
start-up then works as follows:

The node starts up, and listens for one periodT.
1. If the node receives at least one firing packet,

it matches the received neighbor list(s) accord-
ing to listing 1 and chooses the phase of its first
firing corresponding to section 3.2. The further
progress follows theEXTENDED-DESYNC algo-
rithm as described in section 3.1.

2. Else, the node immediately broadcasts its first fir-
ing packet and now listens forT + Trand. This
random period of timeTrand is generated by
a (pseudo) random number generator using the
node’s unique identifier as random seed.

(a) If the node receives at least one firing packet
within T +Trand, it proceeds according to 1.

(b) Else, the node again broadcasts a firing
packet immediately, generates the next ran-
dom numberT ′

rand ∈ [0.0,T] and listens for
T +T ′

rand once more.

The further progress follows 2a or 2b, de-
pending on whether firing packets of other
nodes were received withinT + T ′

rand, or
not.

Using the node’s unique identifier as random seed as-
sures for concurrently firing nodes, that one node listens
for a shorter time and thus fires earlier than all other nodes,
whereas the other nodes are still listening. With an increas-
ing amount of periods, the probability of nodes still firing
at the same time thus is exponentially decaying. Together
with this back-off strategy,EXTENDED-DESYNC will con-
verge and result in a stable state, like that one on the right
side of Fig. 6.

3.3.2 Collision Detection
Next, due to symmetric links a nodei can conclude that

it causes a collision, ifi receives its neighboring nodej, but
over several periodsi 6∈ N1( j). Thus, remember the network
of the nodesL, M and R from section 2.1. Now imagine,
nodesL andR still can’t receive each other, but are asleep.
Just nodeM could communicate with both nodes, is yet
desynchronized and broadcasts its firing packets. Now, both
nodesL andR start up simultaneously, listen for one period,
and receive the firing packet of nodeM. According to 3.2,
the nodesL andRchoose their first time of firing in-between
the time lag of nodeM and its successive phase neighbor
s(M) = M. Unfortunately, they both will choose the same
phase, i.e.φL = φR, which causes a collision of their firings
at nodeM. Therefore, the firing packet of nodeM contains
neither nodes. But by reason of symmetric links, both nodes
L andR can conclude, that they may cause a collision and
thus must change their phases. On account of the definition
of T in section 3.2 and whileT supports further nodes, such
a phase change must be possible.

Indeed, if both pollutersL and R jump to equal phases
again, there are still collisions. Thus, we recommend the us-
age of a (pseudo) random number generator once more. That
is, each polluter decides randomly tojump, i.e. to change its
phase, or not. An optimal probability would be the recipro-
cal value of the number of polluters. But because the number



Figure 7. Logged data from our real-world indoor
testbed with unreliable link

of current polluters is locally unknown and in the majority
of cases just two nodes are causing a collision, a probabil-
ity of 50% provides a good trade-off between reliability and
latency for real-world deployments.
3.3.3 Unreliable Links

From one of our real-world testbeds we received just
strange data at first, as shown in Fig. 7: All phases are nor-
malized to that one of node 89, which started first at period
1. The other nodes 78 and 43 are joining at period 32, and
62 respectively, but the system desynchronizes pretty well
and fast. But as soon as node 47 starts up at period 100,
whole system was not able to converge, because node 47 al-
ways changed its phase or was not even received by node
89. Exactly at period 133, when the faulty node 47 leaves
the network, the remaining nodes try to desynchronize again.
Remarkably, no collisions were detected by node 89 during
the experimental run. A closer look at the network topology
disclosed the answer to that problem: because we tried to in-
stall the multi-hop topology from Fig. 8 indoors, we had to
reduce the transmission power of node 47 to release the con-
nections between node 47 and 43 as well as between node
47 and 89. But thereby, the link between node 47 and 78
became temporarily asymmetric and thus unreliable. How-
ever, all desynchronization algorithms mentioned within this
paper require symmetrical and reliable links. With the fol-
lowing strategy, theEXTENDED-DESYNC still can not han-
dle asymmetrical links in general, but it now can deal with
such unreliable links.

So far, if a neighbor was not received any more within
the next period, it was removed immediately from the corre-
sponding list. Far better results can be achieved, if a node,
which is not received for a moment, is just removed from
the corresponding list after a certain number of consecutive
periods without reception. Our experiments showed that a
holding time of about three periods smooths such unreli-
able links and produces a good trade-off between latency and
fault-tolerance. But a holding time for nodes, which were not
received for a while, doesn’t solve the problem of asymmet-
rical links in general, because the holding time is fixed and
definitely not sufficient for every scenario.

Indeed, the strategies for handling unreliable links and
for detection of collisions are somewhat contrary, that’s why
node 47 changed its phase that frequently, since it followed
the strategy to detect collisions. Reading the received signal
strength (RSS) value of the radio chip could be one possi-
bility to distinguish collisions from unreliable links, because

Figure 8. Topology of our real-world indoor testbed with
unreliable link

for collisions a higher signal strength can be supposed. An-
other indicator for colliding packets could be a failed CRC
check, but this failure may originate from other cases and
additionally, the preamble has to be received completely at
first.

4 Node Integration Behavior
The last section documented the need for additional back-

off strategies for ourEXTENDED-DESYNC algorithm when
implementing real-world applications – despite of proved
convergence. Obviously, the case when a node leaves the
network, because it was removed or it failed, is easy to han-
dle and just creates a few unused time slots. That’s why we
analyze some integration scenarios exemplary in this section
to inspect the procedure of our algorithm. First, we’ll look
at a certain star topology in section 4.1, where the central
node initially operates exclusive, but later on further nodes
will join – even simultaneously. Next, in section 4.2 we’ll
observe another complex scenario of two disjoint and yet in-
dependently desynchronized networks, which become inter-
linked by a joining gateway node.

4.1 Integration into Star Topology
Suppose a simple star topology as shown in Fig. 9, con-

sisting of a central nodeSand a few boundary nodes around.
All boundary nodes are two-hop neighbors but don’t know
each other initially.

First, let us assume that all boundary nodes are yet run-
ning and desynchronized, whileS is asleep. Now, the central
nodeSstarts up, listens for one period and then broadcasts its
first firing packet, containing all boundary nodes received so
far. Simultaneously broadcasting boundary nodes are caus-
ing collisions at the central node and thus aren’t within the
list of one-hop neighbors ofS. That’s why these polluters
then use the collision detection algorithm from section 3.3.2
to cope with that situation. The more boundary nodes are
communicated byS, the faster converges this setting.

Next, we expect that just the central nodeS is running
and follows the strategy for concurrent start-ups from sec-
tion 3.3.1, while all boundary nodes are asleep. If now
some boundary nodes start up concurrently, they will cause
a collision at the central node, but will receive the central
node. Since boundary nodes are not within the list of one-
hop neighbors ofS, each such polluter uses again the colli-
sion detection algorithm from section 3.3.2. If the boundary
nodes would start up by and by, theEXTENDED-DESYNC
algorithm would not need further back-off strategies.



Figure 9. Star topologyS5 with central node S and five
boundary nodes

4.2 Integration as Gateway
Now we’ll analyze a more complex network topology

consisting of two disjunct partial networksA andB plus a
gateway nodeG as exemplified in Fig. 10. Both (partial)
networksA andB are already independently desynchronized,
while nodeG is asleep. When the gatewayG starts up, it lis-
tens for one period.

If G receives both boundary nodesA1 andB1, it selects
a phase according to the received neighbor listsN1(A1), and
N1(B1) respectively. Thus, both networks are unified and no
special back-off strategy was required.

Now let us assume that the boundary nodesA1 and B1
broadcast their firings simultaneously, which occurs with
much lower probability then the first case. This time, the
gateway node receives just corrupt data and thus follows the
start-up strategy from 3.3.1. Granted that without loss of
generality e.g. nodeA2 ∈ N1(A1) and G are broadcasting
their firing packets at the same time over a longer period,
which is even more unrealistic, but causes collisions atA1.
Because the gateway node can’t detect collisions, due to a
still empty list of one-hop neighbors, only nodeA2 can de-
tect its further missing in the neighbor listN1(A1) of node
A1. That means, nodeA2 detects this collision and follows
the strategy from section 3.3.2.

So far, nodesA1 andB1 didn’t change their phases and
still broadcast their firings simultaneously. Because of the
start-up strategy, nodesA1 and B1 eventually receive the
gateway nodeG, but they aren’t on the gateway’s neigh-
bor list N1(G). That’s why these boundary nodes also start
the collision detection algorithm from 3.3.2 to change their
phases. Eventually, this makesG to receiveA1 andB1, which
then will meet each other as two-hop neighbors as soon as the
gateway broadcasts its neighbor listN1(G). For this reason,
we demonstrated the robustness and fault-tolerance of our
EXTENDED-DESYNCalgorithm together with some back-off
strategies.

5 Conclusion and Future Work
In this paper we first introduced the biologically inspired

primitive of desynchronization. Next, we gave a survey at the
DESYNCalgorithm for single-hop networks and its misuse in
multi-hop topologies due to hidden nodes. In addition, we in-
troduced our multi-hop version of a desynchronization algo-
rithm: EXTENDED-DESYNC. Our approach considers two-
hop neighbors and thus prevents hidden nodes. We therefore
proved the algorithm’s convergence and identified the need

Figure 10. The disjoint networks A and B are connected
by gatewayG

of additional back-off strategies for unreliable links, colli-
sion detection and concurrently operating nodes. Finally,an
analysis of several real-world scenarios showed the robust-
ness and fault-tolerance of ourEXTENDED-DESYNC algo-
rithm.

For our approach we added local information into the fir-
ing packets to gain data about the network topology. So, for
our future work we plan to fully utilize the information of the
firing packets for other add-ons, like time synchronization
(even if this add-on is contrary to the primitive of desyn-
chronization) or routing. We also need to analyze some of
the parameter settings, e.g. a dynamically adapted jump size
parameterα, a non-universal periodT, or support of asym-
metrical links. We also want to research possible savings in
energy as a result of exclusive periods for data and periods
for desynchronization. The size and structure of the firing
packet, as well as possible compression techniques also re-
main for future investigations.
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