
On the Improvement of a Self-Organized MAC
Protocol for Multi-Hop Wireless Sensor Networks

Clemens M̈uhlberger
Department of Computer Science

University of Würzburg
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Abstract—Biologically inspired self-organization methods can
help to manage the access control to the shared communication
medium of wireless ad-hoc networks. One lightweight method is
the primitive of desynchronization, which has already been imple-
mented as MAC protocol for single-hop topologies successfully:
periodically transmitting nodes establish a collision-free TDMA
schedule autonomously. However, multi-hop topologies are more
realistic, but each node now requires knowledge about its two-hop
neighborhood to solve thehidden terminal problem.

In this paper we describe our experience using an extended
version of a MAC protocol for multi-hop topologies based on the
primitive of desynchronization. We identified stale information as
pitfall of desynchronization when using phase shift propagation
to solve the hidden terminal problem in multi-hop topologies.
As a result, we included a refractory threshold to manage stale
information at the self-organized MAC protocol based on the
primitive of desynchronization for multi-hop topologies.

Index Terms—desynchronization; refractory threshold; self-
organization; wireless sensor network; multi-hop topology

I. I NTRODUCTION

This section introduces the primitive of desynchronization
as MAC protocol for single-hop topologies, which will be
the core for the following sections. Based on the first mathe-
matical model of pulse-coupled oscillators from Mirollo and
Strogatz [5], Degesys et al. [4] introduced the biologically
inspired primitive ofdesynchronization: it implies that each
node ”oscillates” at the same frequencyf = 1/T . Applied
to the domain of wireless sensor networks, each node tries to
transmit a so calledfiring packetafter every periodT . Such
periodical data transmissions are common, e.g., in biomedical
sensor networks due to periodic sensor sampling (cf. [9]).
For single-hop topologies, desynchronization results in the
temporally equidistant transmission of firing packets: if such
a network consists of a setN of nodes, the time span between
successively transmitting nodes equalsT/ |N |.

Using the primitive of desynchronization, Degesys et al.
implemented the self-organized MAC protocol DESYNC [4]
for single-hop topologies. Each participating node can esti-
mate its time of transmission within a single-hop network
autonomously. Therefore, each node possesses a unique iden-
tifier1 i, and – as already mentioned before – each node
periodically transmits its firing packet.

1For the sake of simplicity, we do not further distinguish between the
identifier itself and the node’s ordinal inN . Moreover, without loss of
generality let1 ≤ i ≤ |N |.

Let ti be the current time of firing of nodei ∈ N , and let
t+i be its next time of firing. When nodei finishes its period,
it broadcasts its firing packet, resets its phase, and updates t+i .
The phase shiftφi (t) ∈ [0, T ) of a nodei denotes the elapsed
time since its current firingti and the given point in timet,
normalized to the periodT as

φi (t) = (t− ti) mod T. (1)

Let N1(i) be the set ofone-hop neighbors, and letN2(i)
be the set oftwo-hop neighborsof node i. Please note that
{i}, N1(i), andN2(i) are pairwise disjoint. When nodei is
receiving a firing packet of its one-hop neighborj ∈ N1(i),
nodei is able to calculate the phase shiftφi (tj) towards this
one-hop neighborj using its time of receptiontj in (1). For
example,φi (tj) = 0.5 ·T means that nodei has finished half
of its current period when it received the firning packet from
node j at time tj . Two neighbors of nodei are of special
interest: the previous phase neighborp(i) ∈ N (predecessor)
broadcasts its firing packet just before nodei, whereas the
successive phase neighbors(i) ∈ N (successor) broadcasts
its firing packet just after nodei.

The primitive of desynchronization forces each node to
transmit its firing packet at a maximum temporal distance
towards both phase neighbors, i.e., each node attempts to
achieve the midpoint of its phase neighbors. Therefore, ob-
serving the firing packets of its phase neighbors, each node
i is able to calculate the corresponding phase shiftsφi

(

ts(i)
)

andφp(i) (ti) as well as itsadjustment factorεi as

εi =
φi

(

ts(i)
)

− φp(i) (ti)

2
. (2)

Finally, nodei sets its next time of firingt+i immediately
after transmitting its own firing packet at timeti as

t+i = ti + T + α · εi

= ti + (1− α) ·T + α · (εi + T ) .
(3)

The jump size parameterα ∈ (0, 1) regulates how fast2

nodei moves toward the assumed midpoint between its phase
neighborsp(i) and s(i). The last expression of (3) shows
its similarity to the exponentially weighted moving average,
which smooths out short-term fluctuations but highlights long-
term trends.

2Usingα = 0 means no movement,α = 1 means no damping at all.



II. STALE INFORMATION PROBLEM

The primitive of desynchronization aims for a self-organized
but collision-free arrangement of time slots. Hence, the nodes
are able to rely on just locally available information. Indeed,
received data from adjacent nodes sometimes is ”stale”, i.e.,
information obtained from received firing packets is obsolete
at the time of their application, and thus unreliable or even
invalid. This problem already exists in single-hop topologies
but it is intensified in multi-hop topologies.

A. Single-Hop Topologies

While nodei uses (3) to calculate its next time of firing
t+i immediately after transmitting its firing packet at time
ti, both its phase neighbors may already have adjusted their
individual next time of firing autonomously. Therefore, the
formerly measured phase shiftsφi

(

ts(i)
)

andφp(i) (ti) might
be stale. This problem is inherent in single-hop (and multi-
hop) topologies, and was first mentioned by Degesys et al. [4].

Patel et al. [8] further examined this problem for single-hop
topologies, and – with regard to the jump size parameterα –
they also proved the convergence of their more robust variant
of the DESYNC algorithm for single-hop topologies: The use
of more recent data for the phase shiftφi

(

ts(i)
)

in (3) will
omit one unreliable information. For this purpose, nodei has
to calculate its next time of firingt+i not immediately after the
transmission of its own firing packet, but immediately afterthe
reception of the first subsequent firing packet of its successor
s(i). As a result, nodei uses more recent data, but the equation
to compute the next time of firingt+i remains the same. Just
the time when the next time of firing is calculated changes
from ti to ts(i).

B. Multi-Hop Topologies

According to Degesys and Nagpal [3], a node additionally
requires knowledge about its two-hop neighborhood to enable
a collision-free communication within multi-hop topologies,
still being consistent with the primitive of desynchronization.
One approach is the phase shift propagation as proposed and
implemented by M̈uhlberger and Kolla [7] for theEXTENDED-
DESYNCalgorithm. Here, each node broadcasts the knowledge
about its one-hop neighborhood along with every firing packet.
Therefore, each nodei additionally is able to take care of its
two-hop neighbors. That means, nodei arranges itself accord-
ing to the firings of all known nodesj ∈ N1(i)∪N2(i). This
is the reason why phase neighbors can be two-hop neighbors
as well. Due to the phase shift propagation, nodei gains
information about its two-hop neighbork ∈ N2(i) ∩ N1(j)
just in cooperation with a one-hop neighborj ∈ N1(i). This
data flow is additionally delayed by at least the phase shift
φk (tj) between nodesj andk.

To exemplify the impact of stale information in multi-hop
topologies using phase shift propagation, we simulated the
EXTENDED-DESYNC algorithm on a small but manageable
scenario. For this purpose, we used a self-developed simulator
on an Intel Core i5-2540M CPU with2.60 GHz and8.00 GB
main memory under Windows 7 Professional 64 Bit.
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Fig. 1. TopologyM7 consists of the setN = {1, . . . , 7} of nodes.
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Fig. 2. Simulation ofM7 (about110 periods since the start up of node7
at period45), α = 0.95, (ρ = 0), point of view: node7.

First, we assume idealized conditions, i.e., all communica-
tion links are symmetrical and reliable, not any node will fail,
and there is no clock drift. According to Degesys et al. [4], we
setα = 0.95 as damping factor. The observed topologyM7

consists of the setN = {1, . . . , 7} of nodes as shown in Fig. 1.
This topology contains two cyclic (and complete) sub-graphs
C3 = {1, 2, 3} and C ′

3 = {4, 5, 6}. Let the nodes of both
disjoint single-hop topologiesC3 andC ′

3 start first. Therefore,
both sub-graphs will desynchronize, but are unaware of each
other. When node7 joins the network, it instantly gains
knowledge of both topologiesC3 andC ′

3. With its first firing
packet containing its one-hop neighborhood (i.e., nodes1
and 4), node7 connectsC3 with C ′

3 and thus completes the
topologyM7. Figure 2 shows the first100 periods since the
start up of node7 at period45 from its point of view. Due to
the stale information in this multi-hop topology, the one-hop
and two-hop neighbors of node7 (i.e, all nodes ofC3 and
C ′

3) rather diverge than converge, as intended by the primitive
of desynchronization. In fact, approximately20 periods after
the start up of node7, the time of transmission of each node
oscillates with a constant but individual amplitude. Besides,
the phase neighbors of node7 are its two-hop neighbors
node 6 and node2. Therefore, to diminish the impact of
stale information in multi-hop topologies, it is not sufficient
to calculate the next time of firingt+i after the reception of
successor’s firing packet.

III. SOLUTION FOR STALE INFORMATION PROBLEM

In Section II, we analyzed the problem of stale information.
As already mentioned, this problem is inherent in the primitive
of desynchronization. For single-hop topologies it is sufficient
for a node i to calculate its next time of transmissiont+i
only after receiving the firing packet of its successors(i) (cf.



Section II-A). Therefore, we will concentrate on multi-hop
topologies in this section. However, we can not avoid stale
information at all, but with our new approach we want to take
control of its evolution and reduce its impact.

A. Refractory Threshold

In multi-hop topologies, the effect of stale information is
intensified due to the delayed propagation of information about
two-hop neighbors (cf. Section II-B). To some extent, our
approach follows thelaw of similars, because we suggest
to intentionally delay the adjustment of a node’s next time
of firing. Therefore, we introduce an additionalrefractory
thresholdρ ∈ [0, 1] along with a continuous random variable
Xi ∈ [0, 1] following the continuous uniform distribution
U(0, 1). According to the random variableXi and the arbi-
trary refractory thresholdρ, the adjustment factorεi will be
considered, or not. Therefore, nodei will set its next time of
firing t+i as

t+i =

{

ti + T + α · εi ρ < Xi (4a)

ti + T otherwise. (4b)

Obviously, choosingρ = 0 lets the nodes always adjust their
time of firing, which results in the same behavior as observed
in Section II-B without any refractory threshold. In contrast,
choosingρ = 1 is useless, since a node will not use its
adjustment factor according to (2) for its next time of firing
anymore.

In some sense, the refractory thresholdρ contradicts the
primitive of desynchronization, because it ”skips” the ad-
justment of the next time of firing using (2). However, it
allows a node to keep its phase (and thus its time of firing)
with a probability of ρ. This behavior helps the system to
converge: Let nodei be phase neighbor of another node
j ∈ N1(i) ∪N2(i). First of all, nodej in return needs not to
be phase neighbor of nodei in multi-hop topologies (cf. [6]).
Moreover, if nodei skips the adjustment of its phase using
(4b), nodej’s estimation of its next time of firing remains
valid regarding the phase shift towards the skipping nodei.
The information about nodei is still reliable.

B. Simulation Results

We will exemplify the impact of our new threshold on the
simple scenario from Section II-B, where the two disjoint
single-hop topologiesC3 and C ′

3 are combined by node7
(cf. Fig. 1). Again, we use the self-developed simulator on
the same computer as mentioned in Section II-B. Once more,
we setα = 0.95, but now each node calculates its next time
of firing according to (4) usingρ = 0.25. That means, on
average each node keeps its phase at every fourth period.
In contrast to the oscillating time of transmission of each
node (cf. Fig. 2), this rather low refractory threshold helps
the network to converge after about25 periods since the start
up of node7 (cf. Fig. 3). Again, the phase neighbors of node
7 are its two-hop neighbors node6 and node2 (cf. II-B).

However, a higher refractory threshold slows down the
convergence rate of the whole system: in comparison to
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Fig. 3. Simulation ofM7 (about110 periods since the start up of node7
at period45), α = 0.95, ρ = 0.25, point of view: node7.
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Fig. 4. Simulation ofM7 (about110 periods since the start up of node7
at period45), α = 0.95, ρ = 0.9, point of view: node7.

the scenario described above, we just raised the refractory
threshold toρ = 0.9. That means, adjustments of the nodes
will be rarely skipped. The simulation result is shown in Fig. 4:
the network is approximately desynchronized after about50
periods since the start up of node7. In comparison to the
previous simulation results, the phase neighbors of node7
have changed in its two-hop neighbors node2 and5.

However, if the refractory threshold is too low, the system
may still rather diverge than converge. For instance, if we
set ρ = 0.1 at the same scenario from above, the time
of transmission of each node again fluctuates, but with a
smaller amplitude (cf. Fig. 5). The simulation results so far
exemplify the capability of our refractory threshold. However,
the refractory thresholdρ must be set carefully in combination
with the jump size parameterα (cf. Section V).

IV. RELATED WORK

In the previous sections, we already referred to some work
regarding the primitive of desynchronization. Therefore,this
section describes further work dealing with stale information.

A. Refractory Period

In Section III, we introduced our refractory thresholdρ to
handle obsolete and thus unreliable data from neighbor nodes.
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Fig. 5. Simulation ofM7 (about110 periods since the start up of node7
at period45), α = 0.95, ρ = 0.1, point of view: node7.

Therefore, a node probabilistically skips the adjustment of
its next time of transmission to obtain more reliable data.
Similar to our approach is the so calledrefractory period,
suggested by Degesys, Basu, and Redi [2] to synchronize (not
to desynchronize, as we do) strongly pulse-coupled oscillators:
if an oscillator receives the firing of a neighbor within the
refractory period, the receiving oscillator does not process this
incoming firing. That means, the phase shift between sender
and receiver is too short and thus, the receiver temporarilydoes
not adjust its next time of firing. Moreover, the phase shift
between two oscillators specifies, whether an oscillator skips
the adjustment of its next time of firing, or not. In contrast,
our refractory threshold is probabilistic and independentfrom
the phase shift between two nodes.

B. Artificial Force Field

Another approach to desynchronize a single-hop network is
presented by Choochaisri et al. [1]. Their DWARF algorithm
reduces the impact of erroneous information from phase
neighbors: The next time of firing of a nodei does not only
depend on the firings of its phase neighbors, instead, the next
time of firing is specified by an artificial force field which
is defined by all other nodes. Each force is weighted by the
phase shift of the corresponding neighbor node towards the
adjusting nodei. This approach circumvents stale information
and is very efficient for single-hop topologies. It also results in
the equal time spanT/ |N | between successively transmitting
nodes. However, to the best of our knowledge, an extension
for multi-hop topologies is currently missing.

V. CONCLUSION AND OUTLOOK

In this paper we introduced the biologically inspired primi-
tive of desynchronization as MAC protocol for wireless sensor
networks. The resulting self-organized protocol for single-
hop as well as for multi-hop topologies has to manage the
inherent problem of stale information. Due to this problem,
the periodical transmission times of nodes may fluctuate in a
multi-hop topology. Therefore, we introduced the refractory
threshold ρ. According to this threshold, and contrary to
the primitive of desynchronization, each node is now able

to probabilistically skip the adjustment of its next time of
firing. Based on some sample scenarios, we demonstrated
the impact of our approach for a small but yet manageable
multi-hop topology. As a result, our approach helps to damp
this fluctuation: the time of transmission of each node will
converge and thus the whole system will desynchronize.

Our future work will be mainly dedicated to the refractory
threshold: first, we want to discover an optimal combination
of the probabilistic refractory thresholdρ and the jump size
parameterα. Next, we want to analyze the convergence
behavior of several scenarios if our threshold depends on
certain topological factors, e.g., the nodes’ degree. Moreover,
we are currently implementing our new algorithm on wireless
sensor nodes, however an analysis under real-world conditions
of this implementation is yet missing. In particular, thesereal-
world conditions include asymmetrical as well as unreliable
links, clock drifts, and erroneous nodes.
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[6] C. Mühlberger, “Desynchronization in Multi-Hop Topologies: AChal-
lenge,” in9. GI/ITG KuVS Fachgespräch Drahtlose Sensornetze, R. Kolla,
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