Evaluating IP Routing Schemes with Metric Optimization

Christoph Reichert

5. Workshop "IP-Netzmanagement, Netzplanung und Optimierung", 18.-19. Juli 2005, Würzburg

Outline

- Traffic Engineering in IP Networks
- · Genetic Algorithms
- Results
 - Failure-free and worst case failures
 - Workaround for an ECMP problem
- Conclusion

TE in IP Networks

- OSPF/IS-IS compute shortest paths based on link weights
- · Optimize link weights so that
 - congestion is avoided
 - delay bounds are met

- ...

 Fortz, Thorup, "Traffic Engineering by Optimizing OSPF Weights"

Objective Function

- Fixed:
 - network topology
 - link capacities
 - traffic matrix
- · Given:
 - link weights (metric)
- · Return:
 - maximum link load in the network
- · Minimize:
 - maximum link load

Objective Function

- Fixed:
 - network topology
 - link capacities
 - traffic matrix
- · Given:
 - link weights (metric)
- Return:
 - maximum link load in the network
- · Minimize:
 - maximum link load

"Environment"

"Genotype"

"Fitness"

"Selective Pressure"

Genetic Algorithms

- Fixed sized population of chromosomes
- Start with random population
 - evaluate each chromosome with objective function
 - select parents according to their fitness
 - crossover: generate children from parents
 - random and directed mutation
- Until #generations reached
- · return best chromosome

Genetic Algorithms (contd)

- GA randomly selects
 - parents
 - crossover points
 - mutation location and value.
- · GA is itself a random variable.
 - Repeat your runs!
- · It's not exactly like in biology
 - No speciation, no extinction, no gender, all chromosomes haploid, ...

Improvements

- Directed Mutation
 - Increment weight of most loaded link
- Evaluation Cache
 - Store evaluated chromosomes in a cache
 - Cache hit ratio about 50%
- · Enhanced Objective Function
 - Worst case failure (incremental SPF)
 - Avoid ECMP multi-split points

Results with and w/o Failures

Results for the KING Labnet

KING Labnet

Fraunhofer Institute for Open

Communication Systems

© 2005, Fraunhofer FOKUS

Problem with ECMP Hashing

· Problem:

 If all Routers use the same ECMP hash function, packets of a given microflow travel either along paths solely black or solely red!

· Workaround:

- Split flows at most once.

· Approach:

 Selective pressure on #splitpoints

Results for the KING Labnet

Conclusion

- Metric optimization can drastically reduce max. link load in cases with or without failures.
- Optimizing for failures increases MLL for normal case slighlty.
- Optimization even enables to work around bugs.

Thank You!

QUESTIONS?