Scalable Routing for Unstructured Networks of Low-Resource Devices

Thomas Fuhrmann

IBDS Systemarchitektur Universität Karlsruhe (TH) Germany

Motivation: Moore's Law

Swiss Army Knife			Toolbox
 Moore's law makes electronic devices more powerful. 		1.	Moore's law makes computation and communication devices smaller and cheaper.
2. Software updates provide the devices with ever increasing capabilities.		2.	Physical tools can be enhanced with electronics.
	Our field of research: Algorithms and protocols for distributed systems in the toolbox scenario		earch: tocols for os in the ario.

Cars already have plenty of electronics ...

Self-Organization and Embedded Systems

Thomas Fuhrmann, University of Karlsruhe, Germany

... are everyday environments next?

Self-Organizing Distributed Systems

SmartDust: J. M. Kahn and B. A. Warneke, University of California at Berkeley. Soldier: US-Army. Mesh-Netz: Netkrom Technologies Inc.

Self-Organization and Embedded Systems

Thomas Fuhrmann, University of Karlsruhe, Germany

5

Problem Statement

- How can we route resource efficiently in self-organizing network?
 - Flooding is too expensive!
 - Holding routing tables is infeasible (no aggregation possible without structure)
 - Geographic routing does not work (no 2D setting)
 - Network planning is infeasible (no network administrator)

This talk presents a novel routing algorithm that is capable to route memory and message efficiently in networks that have arbitrary (random) topology.

1. Motivation

2. Structured Routing Overlays

3. Scalable Source Routing

4. Summary

Self-Organization and Embedded Systems

Thomas Fuhrmann, University of Karlsruhe, Germany

7

Routing – An overview (1)

Based on (static) Topology

- 1. Dijkstra: Each node stores the entire network graph in order to calculate spanning tree.
- 2. Bellman-Ford: Neighboring nodes exchange routing tables. Converges in stable networks.

Network structure and addresses need to match. Otherwise routing tables explode.

Typically ad-hoc

- 1. Flooding: All nodes get all the messages.
- 2. Geographic: Nodes are embedded into vector space. Forwarding according to destination direction. Special care taken to avoid dead ends.

Network structure needs embedding into vector space. Otherwise, too many messages sent.

Routing – An Overview (2)

Trade-Off with Structured Routing Overlays

Chord – A Structured Routing Overlay

Proximity Awareness with Chord

Does this Chord idea help us with our sensor actuator vision of thousands of houses with hundreds of nodes each?

Self-Organization and Embedded Systems

Thomas Fuhrmann, University of Karlsruhe, Germany

Agenda

- 1. Motivation
- 2. Structured Routing Overlays
- 3. Scalable Source Routing
- 4. Summary

13

A Physical Network with Any Topology ...

... Organized Into a Virtual Ring ...

... Connected by Source Routes

A Virtual Ring of Nodes Connected by Source Routes

<u>Claim 1:</u> If each node knows a source route to its successor (in the virtual ring), any node can reach any destination.

Proof: cf. routing along the ring

<u>Claim 2:</u> These source routes can be obtained without flooding.

<u>Claim 3:</u> A small per node cache suffices to achieve efficient routing.

Iterative Successor Search (1) Viewed from node 13: Viewed from node 101: 29 29 13 42 Successor Successor Notification Notification 51 101 51 Self-Organization and Embedded Systems Thomas Fuhrmann, University of Karlsruhe, Germany 19

Iterative Successor Search(2)

Source Route Cache (1)

Nodes use static memory:

- Each node stores its direct physical neighbors.
- Each node stores a source route to its successor (cf. Chord).
- Each node stores a source route to its predecessor (to be able to send updates).
- All remaining memory (assigned to routing) is used to cache source routes in a LRU manner.

Fuhrmann, Scalable Routing in Random Networks, Networking 2005.

Self-Organization and Embedded Systems

```
Thomas Fuhrmann, University of Karlsruhe, Germany
```

21

Source Route Cache

Source Route Cache (2)

- Upon a ,cache miss' the message is forwarded to the node that
 - Lies before the target (in direction of the ring),
 - is physically closest to the forwarding node, and that
 - virtually closest to the target.

3

97

29

101

42

13

Source Route Cache (3)

Simulation Results (1) – Consistency

Simulation Results (2) – Node Specialization

- 1. Motivation
- 2. Structured Routing Overlays
- 3. Scalable Source Routing
- 4. Summary

Scalable Source Routing – Protocol Overview

Seven simple rules lead to self-organized routing:

- Register with your successor in the virtual ring.
- Update your predecessor if necessary.
- Flood only if you think to have the globally greatest address.
- Prune paths when appending paths.
- Cache paths in a LRU manner.
- Keep shorter path variant in the cache.
- Upon cache miss, forward to the node that is physically closest and virtually farthest.

This leads to

- Much smaller memory requirement compared to Dijkstra and Bellman-Ford,
- Much less control messages compared to flooding,
- Works in arbitrary topologies (unlike geographical routing).

Self-Organization and Embedded Systems

Thomas Fuhrmann, University of Karlsruhe, Germany

27

Scalable Source Routing – Protocol Overview

Scalable Source Routing breaks the Trade-Off

The Linyphi Mesh Network for IPv6

Thank you! Questions?

Thomas Fuhrmann I BDS System Architecture University of Karlsruhe, Germany

fuhrmann@ira.uka.de

Self-Organization and Embedded Systems

Thomas Fuhrmann, University of Karlsruhe, Germany

31

Dealing with Churn and Mobility

Thomas Fuhrmann, Pengfei Di, Kendy Kutzner, and Curt Cramer. Pushing Chord into the Underlay: Scalable Routing for Hybrid MANETs. Universität Karlsruhe, Fakultät für Informatik, Technical Report 2006-12, June 2006

Simulation (3) – Compare to AODV and DSR

Simulation Results (4) – Node velocity

Simulation Results (5) – Delay distribution

Simulation Results (6) – Hop distribution

