

The case for a cooperative stack for wireless multihop networks

Jorge García-Vidal, DAC-UPC http://people.ac.upc.edu/jorge/

Euroview'07 Würzburg 07/23/07

Jorge García Vidal, Compnet, DAC-UPC

Cooperative protocols

- · Cooperative protocol:
 - This is a too vague term: In any communication protocol there is some form of cooperation!.
 - Cooperation is related with who owns the system and who benefits from system's operation.
- · Possible (probably unsatisfactory) definition:
 - Protocols which opportunistically exploit broadcast transmission for resource sharing.
 - In other words, they do not use the point-to-point abstraction for wireless links as it is done in most L2-4 current protocols.
- Broadcast transmission is for free. Broadcast reception and promiscuous processing, however, is not for free:
 - eg: typical WiFi NIC power consumption: Tx: 1.5~W, Rx: 1~W, Idle <100 mW.

Euroview'07 Würzburg 07/23/07

Jorge García Vidal, Compnet, DAC-UPO

Cooperative protocols

- · First proposals come from the Information Theory community:
 - Relay channel
 - · '71: Introduced by Van der Meulen.
 - '79: Capacity region for the degraded relay channel found by Cover & ElGamal [Cov79].
 - Renewed interest: Extension to Cooperative Diversity
 - '99: Sendonaris, Erkip & Aazghan [Sen99]
 - · '02: Laneman & Wornell [Lan02].

Relay channel

Decode & forward: Relay decodes the signal, and retransmits the same signal or some information extracted from this signal (e.g. parity bits)

Amplify&forward: Relay amplifies and retransmits the same signal or a quantizied version of the signal

Euroview'07 Würzburg 07/23/07

Jorge García Vidal, Compnet, DAC-UPC

Cooperative protocols

- Some cooperation techniques:
 - Cooperation to improve link quality
 - Cooperative diversity transmission systems
 - · C-ARQ, C-ARQ/FC, MASA, etc
 - <u>Cooperation to increase path reliability in presence of</u> mobility
 - · C-Relaying
 - Cooperation to increase path reliability in presence of fading
 - · Opportunistic Relaying
 - Cooperation to increase network capacity
 - Network coding
 - Cooperation to increase network security
 - Cooperative IDS
 - Cooperation for node location

Euroview'07 Würzburg 07/23/07

Jorge García Vidal, Compnet, DAC-UP

Cooperation to increase network throughput

- · Cooperation to increase network throughput
 - Cooperation in Network transport:
 - Network coding [Ahl00] [Kat05]

Node a sends a packet to c which has to relay the packet to d. This packet is also received by b

Node ${\it e}$ sends a packet to ${\it c}$, which has to relay the packet to ${\it b}$. This packet is also received by ${\it d}$

Node c XORs both packets and sends them in broadcast.

Nodes b and d can recover the intended packet from this

Broadcasted packet, XORing the packet with the stored packet

Throughput increases by 4/3

Euroview'07 Würzburg 07/23/07

Jorge García Vidal, Compnet, DAC-UPC

Cooperative protocols: Cost and barriers

- Cooperation incentives
 - · Why should I use my resources for the benefit of the others?
 - · Not an issue in some applications
- Processing overload
 - · Should I process every packet I hear?
- Cooperation overhead
 - MAC signaling
- Interaction with TCP/IP

Euroview'07 Würzburg 07/23/07

Jorge García Vidal, Compnet, DAC-UPC

A cooperative stack

- Current communication stacks for ad-hoc networks are not designed to exploit the wireless transmission characteristics:
 - E.g: Broadcast transmission limits multihop wireless network capacity (Gupta, Kumar '00).
 - However, it also presents some benefits that could be exploited.
- · Lack of some important issues. Eq:
 - Addressing scheme
 - Forwarding scheme
 - Adequate MAC signalling
 - Protocol stack organization

Euroview'07 Würzburg 07/23/07

Jorge García Vidal, Compnet, DAC-UPO

A cooperative stack

OmpNet

· New abstractions and addressing schemes

Frames can be addressed to a "cloud", i.e. a set of a node and its cooperators.

 $\langle @A_1,0 \rangle$: Node A_1

 $\langle QA_1,1,n \rangle$: Nodes of cloud B_1 (built around A_1). n is used to keep track of changes in cloud membership.

Euroview'07 Würzburg 07/23/07

Jorge García Vidal, Compnet, DAC-UPC

A cooperative stack

Example: In C-ARQ, 5 sends frames with destination address <@D,1,n>. D's cooperators keep temporaly these frames, while other nodes discard them.

Example: In C-Relaying, S sends frames with destination address $(@A_1,1,n)$. A_1 's cooperators keep temporaly these frames, while other nodes discard them.

Euroview'07 Würzburg 07/23/07

Jorge García Vidal, Compnet, DAC-UPC

Conclusions

- Cooperation is a promising technique for future (multihop) wireless networks
- Current communication stacks do not incorporate the adequate abstractions, layering, etc to accomodate cooperation
- Challenge: to define a "cooperative stack"
- · Some important issues:
 - Addressing scheme
 - Forwarding scheme
 - Adequate MAC signalling
 - Protocol stack organization

Euroview'07 Würzburg 07/23/07

Jorge García Vidal, Compnet, DAC-UPC

References

- [Miu05] A. Miu, H. Balakrishnan, C. E. Koksal, "Improving Loss Resilience with Multi-Radio Diversity in Wireless Networks", ACM Mobicom 2005, Cologne. [Mon05] P. Monti, M. Tacca, A. Fumagalli, "Optimized Transmission Power Levels in a Cooperative ARQ Protocol for Microwave Recharged Wireless Sensors", IEEE ICC'05, 2005.
- ZOUS.
 [Zha05] B. Zhao, M. C. Valenti, "Practical Relay Networks: A Generalization of Hybrid-ARQ", IEEE JSAC, Vol. 23, No. 17, January 2005.
 [Mor05] J. Morillo, J. García-Vidal, A. Pérez-Neira "Collaborative ARQ in Energy-constrained Wireless Networks". Third ACM/SIGMOBILE DIAL-M-POMC 2005.

- DIAL-M-POMC 2005.
 [MorO7] J. Morillo, J. García-Vidal, "A Low Coordination Overhead C-ARQ with Frame Combining", IEEE PIMRCO7
 [Cov79] T. M. Cover and A. A. El Gamal, "Capacity theorems for the relay channel", IEEE Trans. on Inf Theory, Sept. 1979.
 [Lan04] J. N. Laneman, D. N. C. Tse, G. W. Wornell, "Cooperative diversity in wireless networks: Efficient protocols and outage behavior", IEEE Trans. on Inf Theory, Dec. 2004.
- [Bis05] S. Biswas, R. Morris, "ExOR:
 Opportunistic Multi-hop Routing for Wireless
 Networks", Proceedings of ACM SIGCOMM'05
 [Ble06] A. Bletsas, A. Khisti, D. Reed, A. Lippman,
 "A Simple Cooperative Diversity Method Based
 on Network Path Selection, IEEE JSAC, Vol. 24,
 No. 3, March 2006.
- No. 3, March 2006.
 [Ahl00] R. Ahlswede, N. Cai, S. .-Y. R. Li, and R. W. Yeung, "Network information flow", IEEE Trans on Inf Theory, vol. 46, iss. 4, 2000.
 [Kat05] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Mard, and J. Crowcroft, "XORs in the air: practical wireless network coding," SIGCOMM Comput, Commun, Rev. vol. 36, iss. 4, 2006.
- [Sen99] A. Sendonaris, E. Erkip, and B. Aazhang, "User Cooperation Diversity part I: system description", IEEE Trans on Comms, vol. 51, no. 11, Nov. 2003.
- 11, Nov. 2003.
 [Lar01] P. Larsson, Selection Diversity
 Forwarding in a Multihop Packet Radio Network
 with Fading Channel and Capture, ACM
 SIGMOBILE Mobile Computing and
 Communication Review, Vol 5 No. 4 (2001)
 [Gar05], J. García-Vidal, "Addressing and
 Forwarding in Cooperative Networks". Research
 Report UPC-DAC-RR-XCSD-2005-6.
 [Dio051 M Diannet: X Ling K Noik X Shen "A
- [Dia05] M. Dianati, X. Ling, K. Naik, X. Shen, "A Node Cooperative ARQ Scheme for Wireless Ad-hoc Networks", IEEE WCNC, 2005.

Euroview'07 Würzburg 07/23/07