
Bi-Directional DSL Transformation
Using miniKanren

Philipp Körner

Heinrich Heine University Düsseldorf — Faculty of Mathematics and Natural Science
— Department of Computer Science — 40225 Düsseldorf, Germany

{p.koerner}@hhu.de

Abstract. The lisb library embeds the B specification language in Clo-
jure and uses three representations: an internal DSL, an intermediate
representation (IR) and a Java AST. To change between representations,
three uni-directional translations are implemented. In this paper, we use
a miniKanren implementation to obtain a new bi-directional translation
between the internal DSL and the IR.
The resulting code is almost 90 % shorter than the reference implemen-
tation. In particular, a data base of all syntactical elements was created
that can be re-used, e.g., to generate documentation. However, the code
is less readable for Clojure developers. Our experience demonstrates that
declarative techniques can indeed be applied in real-world projects, espe-
cially in tools supporting DSLs. At the same time, entry barriers might
be too high for the general audience. Especially tool support, tighter
integration with general-purpose programming languages and documen-
tation should be improved to be attractive for non-experts.

Keywords: miniKanren · DSLs · Translation · Clojure

1 Introduction

The lisb library [11] provides an embedding of B [1], a formal language for state-
based specifications, in Clojure [9]. The goal of lisb is to express or generate
mathematical constraints and formal state-machines in Clojure. lisb offers dif-
ferent representations of constraints, e.g., x = 1 + 2 can be represented in:

– an internal DSL, which is more suitable for humans to read and write, as
(b (= :x (+ 1 2)));

– an intermediate representation (IR), which is less readable, but more suitable
for programmatic transformation, as the nested map literal {:tag :equals,
:left :x, :right {:tag :add, :nums (1 2)}};

– a collection of automatically generated AST nodes of ProB’s [14] parser
suite, used to interact with the Java API of ProB [12], a constraint solver
and model checker for B.

A macro can re-write the internal DSL to expressions which evaluate to the IR.
The IR can be translated into the Java AST, which can be transformed back
into the internal DSL.

https://orcid.org/0000-0001-7256-9560


2 P. Körner

In this paper, we report on our experience using Clojure’s contrib library
core.logic, an implementation of miniKanren [6], while re-implementing the trans-
formation from the internal DSL into the IR. This translation is extremely sim-
ple, especially if done in a full Prolog-style. At the beginning, we only had limited
knowledge of core.logic. We chose it because of the promise of Prolog-like pro-
gramming as a Clojure library and its seemingly nice integration with Clojure
and its data structures (such as maps, sets and metadata). Nonetheless, we hoped
to reap benefits similar to the strengths of Prolog [13], such as:

– obtaining a logical relation between the DSL and the IR that can be executed
in both directions (transforming the DSL into the IR and vice versa);

– organising the translation rules in form of a data base that can be used for
manual and automatic verification as well as for documenting the DSL;

– maintaining only one relation instead of more than 150 individual functions,
especially for enhancements such as linking DSL code with the final output;

– overcoming limitations of the macro-based approach where the underlying
JVM method bytecode limit restricts the size of the DSL input;

– gaining insights for possible future transformations (between IR and the Java
AST, user DSLs and the internal DSL and IR-to-IR-transformations).

This paper is structured as follows: we give a brief overview over miniKanren
and the core.logic library as well as the lisb library and the two representations
we want to transform between in Section 2. The new implementation and our
solutions to issues that came up during development are outlined in Section 3. We
discuss the resulting code and our experience during development in Section 4
and draw our conclusion in Section 5.

2 Background

Below, we briefly highlight relevant points regarding the used libraries.

2.1 miniKanren and the core.logic Library

miniKanren [6] is a domain-specific language for logic programming, initially de-
veloped in Scheme. The idea is to extend functional programming, where each
function has exactly one return value, to relational programming, where rela-
tions return true iff the input values are contained in that relation (like Prolog
predicates). For this, miniKanren allows introducing logical variables and imple-
ments a backtracking search1. The miniKanren core is very compact consisting
only of four operators (run — the main entry point to change to miniKanren’s
semantics —, as well as the equivalents of ==, fresh and conde described below).
However, it is intended to be extensible (e.g., by tabling or nominal logic).
1 “The core miniKanren implementation [. . . ] uses a stream-based interleaving search

strategy [which] makes it difficult to exactly characterize the search behavior, and
therefore the order in which miniKanren produces answers” [6, Ch. 17.1]



Bi-Directional DSL Transformation Using miniKanren 3

The core.logic library2 is an implementation of miniKanren3 in Clojure [9],
a functional Lisp that runs on the JVM. With some extensions, the project
describes itself as offering “Prolog-like relational programming, constraint logic
programming, and nominal logic programming for Clojure”. For this paper, we
make use of:

– ==, which tries to unify two logical terms (like = in Prolog),
– fresh, which introduces new, unbound logical variables in a scope (which

automatically happens in Prolog by introducing a variable),
– conde, which creates a logical disjunction of clauses (like Prolog’s “;”),
– conso, which can be used to construct and destruct lists (L = [H|T] in

Prolog),
– matche, a pattern matching macro (included in Prolog’s unification),
– the non-relational function project that allows extracting the value from a

logical variable in order to interact with it via arbitrary Clojure functions.

2.2 lisb Library

The lisb library embeds the B specification language4 [1] in Clojure. The name
“B” is used both to refer to the language and a formal methodology to ob-
tain correct-by-construction software: Typically, state machines are written and
proven correctly. Details of how the computation shall work are added in refine-
ment steps, which are linked to the more abstract version via proof. B has also
been used for data validation projects [5], where it is checked that data satisfies
complex properties described in first-order logic and set-theoretical constructs.
One tool supporting the B method is ProB, a model checker, constraint solver
and animator for B.

The goal of the lisb library is to provide a tool to easily write constraints
or state machines in Clojure or programmatically generate them from external
data sources. Below, we informally outline its DSL for B, the underlying IR, and
the existing, functional translation between those two.

B DSL The internal B DSL is designed to feel natural to Clojure programmers,
yet stay close to the original B constructs. This results in some trade-offs where
the DSL is not uniform:

– Literals, i.e., keywords (to represent logical variables), strings and numbers
can be directly written.

– Constants, such as the set of natural numbers, are symbols.
– Most operators feel like regular function calls, e.g., (+ 1 2).
– Operators may have optional arguments, e.g., in (if cond then else), the

else branch is optional, whereas others have a variadic number of parame-
ters, e.g., (+ 1 2 3 4 ...).

2 https://github.com/clojure/core.logic
3 It even was described as the most popular implementation by Byrd.
4 For the understanding of this article, no knowledge of B is required.

https://github.com/clojure/core.logic


4 P. Körner

– Sequence data types (vectors and lists) are not interchangeable: e.g., the
expression (for-all [:x :y] ...) introduces the new variables :x and :y
in a vector (and explicitly not a list).

– There is some syntactic sugar, e.g., we expect that the for-all opera-
tor (for-all [:x] (=> premise conclusion)) has an implication as its
body, but also allow splicing the premise and conclusion into two arguments
(for-all [:x] premise conclusion). Further, there are aliases for oper-
ators which align with Clojure function names (e.g., a contains? variant of
the member? predicate that aligns with Clojure naming and argument order);

– There are some further special cases in the DSL which we will not cover for
the sake of brevity.

Intermediate Representation The IR in lisb aligns (mostly) with ProB’s
Java AST. In contrast to the AST objects, however, the data representation al-
lows duplicating and moving sub-trees arbitrarily. A few re-writes are performed
before transforming it into the Java AST, e.g., enforcing that arithmetic oper-
ators are binary. As an example, the IR data for the B DSL snippet (for-all
[:x] (member? :x nat-set) (<= :x 0)) is as follows:

{:tag :for-all, :ids [:x],
:implication {:tag :implication,

:preds ({:tag :member, :elem :x, :set {:tag :nat-set}}
{:tag :less-equals, :nums (:x 0)})}}

Each map has a :tag that defines the operator. The arguments are stored
under keys which depend on the operator (e.g., :implication, :elem and :set,
or :nums in the example above). The differing keys serve two functionalities:
aside from storing arguments, they state a type that can be verified by Clojure’s
Spec [15, Ch. 5] library (which provides an optional, ad-hoc type system).

Reference Implementation In order to transform the B DSL into the inter-
mediate representation, we initially implemented a functional version (refered
to as reference implementation below). The reference implementation makes use
of a macro, a programmatic source-to-source translation. The macro inserts the
DSL code as a body of a let-expression: symbols for operators (such as = or
for-all) are (re-)bound to lisb library functions that generate an IR snippet.
This macro has the following form:

(defmacro b [body] ... some pre-processing ...
`(let [~'+ b+, ~'- b-, ~'for-all bfor-all, ...]

~pre-processed-body))

The functions that generate the corresponding IR snippets all are similar and
small. They simply take all arguments and store them at the correct position
in a map. Due to the evaluation mechanism of Clojure, arguments are already
evaluated to their corresponding IR. For example, the function b+ that returns
the IR for an addition is defined as follows:



Bi-Directional DSL Transformation Using miniKanren 5

(defn b+ [& nums] {:tag :add, :nums nums})

The reference implementation consists of about 170 functions for the opera-
tors and a few functions for pre-processing special cases in the DSL.

3 Implementation

In this section, we outline the important parts of our new translation. The goal
is to transform the B DSL, with expressions such as (b (= :x (+ 1 2))),
into an intermediate representation of constraints or state machines, such as
{:tag :equals, :left :x, :right {:tag :add, :nums (1 2)}}.

We will focus on the general case5 of the translating relation (Fig. 1) and —
for the sake of brevity — will ignore the handling of special cases. Below, we will
directly refer to this listing by citing the relevant line numbers as we discuss the
covered aspects.

Figure 2 tries to approximate this translation relation in Prolog. This version
differs in some aspects: Most Prolog systems do not support maps6, so the IR
argument is a list of tuples representing key-value pairs instead. We assume that
this list of pairs is ordered correctly — a map would not have an order one could
rely on (see Section 3.3 for details). Finally, the representation of the data base
is not idiomatic in Prolog. Instead, one could specify the same variable twice (like
rule(["for-all", X, Y], [[tag, forall], [ids, X], [implication, Y]]))
and “share” the arguments between the DSL and the IR. This, however, is not
possible in core.logic (see Section 3.1 for details).

1 (defn translato [dsl ir]
2 (fresh [... introduce variables below ...]
3 (conso operator args dsl)
4 (featurec ir {:tag ir-tag})
5 (db/rules ir-tag operator db-tags)
6 (conso _1 _2 db-tags)
7 (try-extract-mappo db-tags ir ir-pairs)
8 (match-vals-keys db-tags translatod-args ir-pairs)
9 (conso [:tag ir-tag] ir-pairs ir-pairs-with-tag)

10 (maplisto translato args translatod-args)
11 (pairs-mappo ir-pairs-with-tag ir)))

Fig. 1. Main Case of the Translation Relation

5 The full code base can be found at https://github.com/pkoerner/lisb/tree/feature/
core-logic-translation/src/lisb/translation/core_logic_translation.

6 To the best of our knowledge, one cannot express the example using SWI’s dicts
because the equivalent of featurec (cf. Section 3.2) requires ground arguments.

https://github.com/pkoerner/lisb/tree/feature/core-logic-translation/src/lisb/translation/core_logic_translation
https://github.com/pkoerner/lisb/tree/feature/core-logic-translation/src/lisb/translation/core_logic_translation


6 P. Körner

rule(forall, "for-all", [ids, implication]). % data base, cf. Sec. 3.1
make_tuple(X,Y,[X,Y]). % helper predicate for a concise maplist

translato([Operator|Args], IR) :-
select(['tag', IR_Tag], IR, IR_Pairs),
rule(IR_Tag, Operator, DB_Tags),
maplist(make_tuple, DB_Tags, TArgs, IR_Pairs),
maplist(translato, Args, TArgs).

translato(X,X) :- atomic(X). % example of direct translation of primitives

% example call --- can be called in both 'directions'
?- translato(["for-all", a,b], X), !, translato(Y,X).
X = [[tag, forall], [ids, a], [implication, b]],
Y = ["for-all", a, b] .

Fig. 2. Prolog Example Approximately Mirroring Fig. 1

3.1 Data Base and Variadic Arguments

core.logic allows executing queries in the context of data bases; yet, in contrast
to Prolog, once a variable in the knowledge base is bound, it remains bound to
that value for the entire query (in particular, another lookup yields the same
value). Thus, we organise only the static components of the translation rules as
a ternary data base relation. The first item is the value in the IR map associated
under the key :tag, identifying the operator. Second is the symbol that is the
operator in the DSL. The third entry is a vector of keywords giving the syntactic
ordering of the arguments. For example:

[:for-all for-all [:ids :implication]]
[:add + [[:nums]]]
[:any any [:ids :pred [:subs]]]
[:nat-set nat-set []]

The (for-all ...) form expects two arguments, first a vector of identifiers,
and second a logical predicate that must be fulfilled. The addition allows an
arbitrary number of arguments: The extra vector around :nums is syntax mean-
ing all following arguments will be stored under this key. Both concepts come
together for the DSL call (any ...), where first comes a vector of identifiers,
second a predicate constraining the identifiers, and third an arbitrary number of
variable substitutions. Last, the constant nat-set has no argument and should
not be a call but a symbol in the DSL.

core.logic allows specifying which arguments should be used to index a rela-
tion in the data base (in contrast to most Prolog systems which use the functor
of the first argument for indexing). In this instance, we chose both the first and
the second argument to avoid a linear search, allowing efficient lookup (line 5)
both when the first argument is known (translating the IR to the DSL) and
when the second argument is known (translating the DSL to the IR).



Bi-Directional DSL Transformation Using miniKanren 7

3.2 Locating Operator and Tag

Before we can perform the data base lookup, we need to destruct the DSL into
operator and arguments (line 3). If the DSL is given, we can obtain the keys for
the IR map. Given the IR, we need to find the corresponding operator and to
know which keys contain the arguments (in which order).

Unfortunately, support for the map data structure is severely limited (ulti-
mately, due to the implementation in Clojure as an immutable version of hash
tries [2]). The core.logic library offers a featurec-function that sets up a con-
straint that at least a given key-value pair is present in the map. While one can
use a logical variable as a value, variable propagation does not work properly,
and the resulting map may still have an open variable with an additional con-
straint. However, it is sufficient to extract the value under a given key (or keep it
as a logical variable, line 4), so that the data base lookup works bi-directionally.

3.3 Generation of Maps

Knowing both the DSL operator and the IR tag, the next step is to recursively
translate the arguments (line 10).

If the IR is given, we need to extract the values (line 7), order them (defined
by the data base entry, line 8), and recursively translate them back into the DSL
(line 10). In order to extract the values, we wrote a relation that iterates over
a sequence of keys and yields the corresponding key-value pairs by repeatedly
projecting a function that performs the map lookup (line 7).

However, if the DSL is given, we need to translate the arguments before
we are able to construct a map (as featurec calls are uni-directional and no
alternative exists — line 7 becomes a no-op if the map is not bound). Thus, we
collect the key-value tuples in a list (line 8 and 9), use project to obtain the
value of this logical variable and non-relationally unify the IR with a new map
created from these tuples (line 11).

4 Discussion

Having achieved a bi-directional translation, in the following, we want to discuss
our experience during development.

4.1 Goal Achievement

First, we want to emphasise that almost everything we aimed for is possible!
However, in most cases, it comes with a caveat: In particular,

– we can transform DSL code to the IR and back using the same code;
– the translation rules are represented compactly as data base facts (albeit less

readable than we hoped), see Section 4.2;
– changes that concern all operators can be made in one location (but correct

changes are harder than before, see Section 4.4);



8 P. Körner

– the implementation technically works for large inputs (although the perfor-
mance is an issue, see Section 4.4).

Due to our unfamiliarity with the search strategy, only consistently providing
error messages that highlight unsupported constructs in either the DSL or the IR
instead of returning no solution was not achieved. Yet, in most tested scenarios
that did not provide both the DSL and the IR, it seems to work as intended.

4.2 Code Size

The resulting implementation has about 170 data base entries in addition to
about 150 LoC (lines of code) for the core.logic relations. The main relations
consist of 15 clauses, of which six are for special cases and two attempt to output
useful error messages. This is a significant improvement over the old name space
spanning over 1400 LoC for one translation.

4.3 Test Strategy

To validate completeness and correctness of the new translation and to locate
bugs, we used a combination of tests: First, example-based tests that check
whether the translation yields the correct result for small snippets. Second,
tests that check whether executing works bi-directionally, i.e., the re-translation
yields the input again. Third, we used test.check, a Clojure implementation of
QuickCheck [8] to generate DSL code (which may contain type errors that are
not checked at this stage). The property used for testing was that the new trans-
lation yields the same IR as the reference implementation.

The property-based approach quickly uncovered nodes missing in the data
base, in particular some constants and aliases. It also showed that our transfor-
mation from sets to sequences did not work for the empty set: Instead of the
empty list, nil was returned, which was not handled by our implementation of
maplisto.

4.4 Performance
Table 1. Runtime of
(nesto n l) calls.
n runtime (msecs)
17 94.829496
18 186.944613
19 372.794756
20 751.533654
21 1534.125473
22 3074.324231
23 6066.818982
24 12140.838974

As core.logic can be regarded as an interpreter, we were
prepared to accept slower performance than our (not heav-
ily optimised) reference implementation7. However, for
some generated input, the translation was surprisingly
slow (more than a minute runtime even if the code snippet
only spanned over three lines).

We first assumed that — due to our unfamiliarity with
the search strategy — too many alternatives were explored
and some conde should be replaced by a version that hin-
ders backtracking. Our investigation led to an innocent
7 Compared to native code, often at least a 10× slow-down is mentioned [4].



Bi-Directional DSL Transformation Using miniKanren 9

minimal relation (nesto n l) that relates a number n with a list l that is
nested n times, e.g., (nesto 0 []) and (nesto 3 [[[[]]]]) hold true:

(defnu nesto [n l]
([0 []]) ;; pattern matching of arguments - base case
([n [res]] ;; recursive case - nest the result
(fresh [nn]

(is nn n dec) ;; decrease number
(nesto nn res))))

;; Prolog version
nesto(0, []).
nesto(N, [Res]) :- NN is N - 1, nesto(NN, Res).

Indeed, querying a single solution is exponential in n in core.logic (cf. Table 1)
(but is linear in Prolog). The same behaviour does not only hold true for nested
sequences (which is our DSL), but also for nested maps (which is our IR). In
fact, an almost nine-year-old issue8 identifies that even unifying with a deeply
nested data structure performs slowly. The underlying issue is a non-optimal
implementation of the unification algorithm that for each level of nesting tries
to unify the entire (sub-)structure again, even though child nodes have already
been visited.

4.5 Required Expertise

The resulting relation and required helper relations are definitely on the short
side. We want to stress that the endeavour is not even hard per se. Yet, we
noticed that the entry barrier is very high.

An issue is that innocent-looking changes or attempts to simplify the code
easily can introduce bugs. As an example, we used calls exactly as the conso
in line 6 in Fig. 1 to generate the correct data type, i.e., lists instead of vec-
tors. This instance, however, is not such a trick; In fact, it is necessary to dis-
tinguish operators from constants. An accidental removal of the call did not
obviously break anything; in fact, it just added solutions (e.g., additionally to
nat-set the wrong DSL call (nat-set) was supported as well). However, there
was an — again innocent-seeming — symptom in the tests: Translating the call
(contains? nat-set 42) to the IR and back suddenly did not yield itself any-
more but instead its alias (member? 42 nat-set). While we do not entirely
understand the reasons, the additional solutions somehow influenced the search
order, so that the first solution changed as well.

Standard Library The underlying cause is that there is no real standard library
of relations, neither built-in nor provided by the community. The list of built-
ins in Section 2.1 is almost exhaustive! Neither most typical Prolog predicates
nor most Clojure functions are available. If there was a nonempty-relation, the
reason for the call in line 6 would have been clear.
8 https://clojure.atlassian.net/browse/LOGIC-177

https://clojure.atlassian.net/browse/LOGIC-177


10 P. Körner

Documentation The documentation of core.logic is very concise. As a metric,
there are 191 public vars in the core namespace, of which 120 are not documented.
It is hard to guess which parts of the library could be relevant. The Wiki attached
to its GitHub repository offers some information, but is not very organised.
Worse, for both docstrings and the wiki, there are open issues in the bugtracker
that some of the already little information is plain wrong !

Debugging Debugging is severely hindered in core.logic, as internally, everything
seems to be an anonymous closure. The function trace-lvars allows outputting
the current variable bindings. Yet, due to the search strategy (and laziness of the
sequence of results), it does not offer any insights which call actually is relevant
for the result. There seems to be no further functionality.

Readability While it is a fairly subjective measurement, the syntax of core.logic
seems unfamiliar both from a Clojure and from a Prolog view. It might be that
pattern matching is only available as part of the matche expression (and its
variants), so that even list structures are lost to the reader’s eye behind variable
names and calls to conso.

Data Structure Support The integration of core.logic with the basic map data
structure is, unfortunately, not good. As long as maps are fully instantiated, it
is reasonable to work with them. However, if maps are constructed on the fly, it
seemingly becomes impossible to do it purely relational. Even simple constraints
on maps, that require a key-value pair as a feature in a map with a bound key
and variable value do not propagate bound values into the solution. The map
remains unbound with an open feature constraint. There also seems to be no
way to obtain a minimal, labeled value. As an example, in the following call, m
will remain unbound unless explicitly unified with a fully instantiated map:

(featurec m {:foo 42})

Our solution ultimately falls back to basic lists of key-value tuples. It is
unfortunate that it is required to ultimately mimic Prolog-style predicates where
maps usually are not supported at all. The same goes for the set data structure,
where even enabling basic support feels much like a dirty hack.

4.6 Related Work and Alternatives

Overall, there is little documented use of the core.logic library: most notable are
Typed Clojure [3], which adds a static type system to Clojure; and FunnyQT,
a library to query and transform models [10, Ch. 33–37]. It offers a DSL that
allows users to express transformations between representations of the same
model, with additional conditions on the relation that must be fulfilled. The
core.logic library was also used in a mini case study in linguistic computing [18]
to encode automata as a logical relation.

Nogatz et al. [17] [16, Ch. 9] implemented a tool in Prolog to both infer coding
style rules of Prolog predicates and to pretty print the AST in accordance with



Bi-Directional DSL Transformation Using miniKanren 11

such rules. Many of the supplied predicates can be called bi-directionally, i.e.,
they are agnostic to their call mode. This ultimately yields a tool that provides
both a parser and a pretty printer using the same Prolog code. The employed
ideas are largely similar to the ones used in this work. The main difference lies
that the Prolog tool utilises delays (e.g., to avoid instantiation errors on string
operations) while we have to resort to using specialised helper relations based
on the argument that is instantiated.

Alternatives The data base structure presented in Section 3.1 was chosen some-
what arbitrarily. A Prolog-style data base with logical variables would have been
preferred — however, once bound, the variables remain unified in core.logic. A
more verbose solution could have performed a term-copy after the look-up and
unify the values with the copied variables. Alternatively, one could have designed
a large match-clause that retains both the DSL sequential structure and the IR
map structure as literals, such as:

(matche [dsl ir]
([['for-all ids impl]

{:tag :for-all :ids ids, :implication impl'}]
(translato impl impl'))

([['+ . args] {:tag :add, :nums args'}]
(maplisto translato args args'))

(['nat-set {:tag :nat-set}])
...)

The main advantage is that the awkward construction of maps is not neces-
sary. Yet, changes afflicting all clauses, e.g., retaining meta-data, requires mod-
ifying all clauses or adding a wrapping relation that is mutually recursive with
the main translating relation.

Another alternative would be to use a less mighty library such as meander9, a
term re-writing system. While one can easily express translation rules, it seems
that only uni-directional transformations are possible. Using a data-base like
approach here could allow us to simply generate both directions.

Further, one could just directly use a Prolog — preferably one that runs on
the JVM (e.g., 2P-Kt / tuProlog [7]) for ease of integration with other features of
lisb. However, further transformation between supported Prolog data structures
and Clojure data is, again, required, similar to outlined issues with maps in
core.logic.

5 Conclusion

Overall, miniKanren and the core.logic implementation in particular have the
potential to be tools that are very useful and suitable for such a task like bi-
directional transformations between arbitrary data. Yet, before we can consider

9 https://github.com/noprompt/meander

https://github.com/noprompt/meander


12 P. Körner

using it in practice, the following points would need to be addressed (ranked in
the order of our subjective severity):

– Most pressing is the performance issue in the unification of nested data struc-
tures (cf. Section 4.4). This is, ultimately, the blocker preventing the use of
the translation we developed. Even though there are no hard performance
constraints (we would be happy to trade one or two orders of magnitude
of runtime for code that is more maintainable), the exponential runtime
(regarding the depth of nested sub-expressions) absolutely hinders adapta-
tion of the core.logic implementation; After all, the nesting level can quickly
become deep in complex or generated mathematical constraints.

– The debugging and tracing capabilities need to be improved. Currently, the
search strategy is hard to comprehend, leading to information that is seem-
ingly randomly interleaved. It is almost impossible to locate bugs based on
the tracing output. This directly impacts the maintainability of the code
written in core.logic and would be a significant trade-off when considering
using the new implementation.

– Clojure’s standard data structures, i.e. maps and sets, need better inte-
gration. Pragmatic limitations would be fine: it would suffice if one could
generate a minimal map given the featurec constraints, or use variables as
values in maps. At its current state, the interface suggests that more features
exist than are available.

– Even though there is a significant amount of information on the usage of
core.logic offered in tutorials, the documentation still needs to be improved.
For example, it is hard to understand the semantics of the conda and condu
variants that implement versions of a cut operator. Paired with the incom-
prehensive search strategy, it is also hard to learn it by small experiments.

This example aligns with our overall experience regarding the declarative
paradigm: techniques and tools are well-known and available. However, the shift
to bring it to mainstream programmers — here, with access to the entire Java
eco-system — did still not occur: Tools often are specialised for their own input
language and lack a good integration with traditional programming languages.
Issues which are software engineering problems, like performance bugs or mem-
ory leaks, often remain unresolved. The reasons for obtaining a result are some-
times hard to follow (think Prolog’s “no”), and debugging tools sometimes are
not sufficient. Further, in many cases, documentation is lacking.

Ultimately, the implementation work might only have been possible because
the author has a background in programming with Prolog. Regardless, the expe-
rience remained overly cumbersome and, ultimately, disappointing. We hope that
declarative techniques may eventually be more widely adapted. However, they
first need to grow more mature and accessible to non-academic programmers.

Acknowledgments. The author thanks Mounira Kassous for the prototype of the
implementation in core.logic and Henrik Hinzmann for implementing the generators
for testing.



Bi-Directional DSL Transformation Using miniKanren 13

References

1. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press (1996)

2. Bagwell, P.: Ideal hash trees. Es Grands Champs 1195 (2001)
3. Bonnaire-Sergeant, A.: Typed Clojure in Theory and Practice. Ph.D. thesis, Indi-

ana University (2019)
4. Brunthaler, S.: Virtual-machine abstraction and optimization techniques. Elec-

tronic Notes in Theoretical Computer Science 253(5), 3–14 (2009). https://doi.
org/https://doi.org/10.1016/j.entcs.2009.11.011

5. Butler, M., Körner, P., Krings, S., Lecomte, T., Leuschel, M., Mejia, L.F., Voisin,
L.: The First Twenty-Five Years of Industrial Use of the B-Method. In: Proceed-
ings FMICS (International Conference on Formal Methods for Industrial Critical
Systems). Lecture Notes in Computer Science, vol. 12327, pp. 189–209. Springer
(2020)

6. Byrd, W.E.: Relational programming in miniKanren: techniques, applications, and
implementations. Ph.D. thesis, Indiana University (2009)

7. Ciatto, G., Calegari, R., Omicini, A.: 2P-Kt: A logic-based ecosystem for symbolic
AI. SoftwareX 16, 100817:1–100817:7 (2021). https://doi.org/10.1016/j.softx.2021.
100817

8. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. In: Proceedings ICFP (International Conference on Functional
Programming). pp. 268–279. ACM (2000)

9. Hickey, R.: A History of Clojure. In: Proceedings HOPL (History of Programming
Languages). pp. 1–46. ACM (2020)

10. Horn, T.: A Functional, Comprehensive and Extensible Multi- Platform Querying
and Transformation Approach. Ph.D. thesis, University of Koblenz-Landau (2016)

11. Körner, P., Mager, F.: An Embedding of B in Clojure. In: Companion Proceedings
MODELS (International Conference on Model Driven Engineering Languages and
Systems: Companion Proceedings). p. 598–606. ACM (2022)

12. Körner, P., Bendisposto, J., Dunkelau, J., Krings, S., Leuschel, M.: Integrating
formal specifications into applications: the ProB Java API. Formal Methods in
System Design 57, 160–187 (2020)

13. Körner, P., Leuschel, M., Barbosa, J., Costa, V.S., Dahl, V., Hermenegildo, M.V.,
Morales, J.F., Wielemaker, J., Diaz, D., Abreu, S., Ciatto, G.: Fifty Years of Prolog
and Beyond. Theory and Practice of Logic Programming pp. 1–83 (2022)

14. Leuschel, M., Butler, M.: ProB: an automated analysis toolset for the B method.
Software Tools for Technology Transfer 10(2), 185–203 (2008)

15. Miller, A., Halloway, S., Bedra, A.: Programming Clojure. Pragmatic Bookshelf,
3rd edn. (2018)

16. Nogatz, F.: Defining and Implementing Domain-Specific Languages with Prolog.
Ph.D. thesis, Universität Würzburg (2023)

17. Nogatz, F., Seipel, D., Abreu, S.: Definite Clause Grammars with Parse Trees: Ex-
tension for Prolog. In: Proceedings SLATE (Symposium on Languages, Applica-
tions and Technologies). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2019)

18. Varjú, Z., Littauer, R., Ernis, P.: Using clojure in linguistic computing. In: Pro-
ceedings ELS (European Lisp Symposium) (2012)

https://doi.org/https://doi.org/10.1016/j.entcs.2009.11.011
https://doi.org/https://doi.org/10.1016/j.entcs.2009.11.011
https://doi.org/https://doi.org/10.1016/j.entcs.2009.11.011
https://doi.org/https://doi.org/10.1016/j.entcs.2009.11.011
https://doi.org/10.1016/j.softx.2021.100817
https://doi.org/10.1016/j.softx.2021.100817
https://doi.org/10.1016/j.softx.2021.100817
https://doi.org/10.1016/j.softx.2021.100817

	Bi-Directional DSL TransformationUsing miniKanren

