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Abstract. In Prolog, data structures are extremely simple: Ultimately,
everything is a term, i.e., a functor and a number of arguments, which
are terms themselves. This can be used to implement efficient data struc-
tures, and most Prolog standard libraries offer an implementation of
AVL trees, association lists, etc. Recently, many Prolog systems also in-
troduced data structures that are not term-based, such as blackboards
or mutable dictionaries. The algorithmic complexity of operations on all
these data structures is well-studied — yet, to our knowledge, no empir-
ical comparison has been conducted for Prolog.
In this paper, we present our results on comparing different data struc-
tures. In particular, for each data structure, we benchmark the runtime
of (i) an access operation (attempting to find a key or value), varying
the percentage that the key or value is contained, (ii) an insert operation
that adds a value or key-value pair to the data structure. Mutable data
structures perform best, AVL trees are a solid alternative if a term-based
data structure is required, and ordered sets perform the worst overall.
The fact database can be a reasonable option to store data as well.

Keywords: Prolog · Data Structures · Evaluation

1 Introduction

Many Prolog systems [4] provide a variety of data structures, ranging from the
ubiquitous lists, to ordered lists, binary trees, balanced binary AVL trees, and
mutable dictionaries. In addition, one can assert and retract facts or use black-
board primitives to store data. Choosing an appropriate data structure for a
task is an important decision regarding a program’s performance. This decision
may not come easy, as several factors influence the performance, e.g., what kind
of data is stored (numbers, atoms or compound terms), the number of elements,
in which patterns they are accessed, etc.

The theoretical asymptotic runtime of Prolog data structures is well under-
stood. However, to the best of our knowledge, no empirical evaluation of how
Prolog data structures perform in practice has been published.

With this paper, we provide a brief report on the results of some experiments
we conducted. Due to page limitations, we cannot present all data we collected
— possible combinations of aspects that can be imagined are too broad to pro-
vide a conclusive answer anyway. Instead, the intent is to raise awareness that
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expectations on how well performing a solution actually is might differ from
reality and to spark further discussion and research.

The motivation of this work stems from trying to improve the ProB animator
and model checker [6,5]. It uses a variety of the above mentioned mechanisms:
unordered lists for environments, ordered lists to collect used identifiers, AVL
trees for large sets and relations, facts for the state space. It even stores some
data like the model checking queue in C++. With the arrival of new mutable
dictionaries in SICStus Prolog 4.7, we conducted an extensive empirical study to
decide for which parts of ProB other data structures could be more appropriate.

The rest of the paper is structured as follows: we summarize the benchmark-
ing methodology in Section 2 and present results in Section 3. Finally, we discuss
conclusions and potential shortcomings of the benchmark sets in Section 4.

2 Methodology

This section describes the procedure used to collect the data. This includes a
description of how the data structures are generated and how elements for the
access and insertion operations are generated.

The benchmark code, raw data and additional plots, as well as the bachelor’s
thesis this article is based on [7], can inspected at:

https://github.com/pkoerner/prolog-runtime-data-companion

Benchmarks are executed in Prolog SICStus Prolog Version 4.7.1 [1] for Win-
dows 10 x64 on an Intel i9-9900K CPU with 32 GB of DIMM 2400 MHz RAM.
Runtime is measured by querying SICStus’ statistics predicate for the cur-
rent wall clock before and after each loop accessing or inserting the elements.
In particular, all data structures (the base data and the elements that shall be
accessed or inserted) are generated before the time is started. All benchmarks
were executed sequentially. To minimize the influence of measurement inaccu-
racies, each benchmark is repeated five times and averaged using the geometric
mean [2]. To account for zero values when using the geometric mean, 1 is added
to the measurements before the calculation and 1 is subtracted from the result
after the calculation. Global data structures (i.e., facts and the blackboard) are
cleared after each iteration.

In Table 1 and below, we will first give an overview of the data structures we
considered. Then, we describe the data sets which are used for the benchmarks.

2.1 Observed Data Structures

For our experiments, focus on the data structures that are shipped with SICStus
Prolog and its standard library. Below, we give a brief overview over the data
structures and their expected runtime performance. We focus on using these data
structures to represent Key-Value associations, assuming keys to be unique in
the data structure. In our empirical analysis we will focus on two operations on
these data structures: insertion of a Key-Value pair and lookup of the Value for
a given Key.

https://github.com/pkoerner/prolog-runtime-data-companion
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Table 1: Overview of data types, expected runtimes and key takeaways from our
experiments.
Data Type Order / Index Insert Random Access Key Takeaway

List arbitrary constant linear, size/2 average
case

use only for small lists

Deduped
List

arbitrary linear linear, n/2 average
case

prefer over ordsets

Ordered
Sets

comparison middle, linear, n/2
average case

linear, n/2 average
case

use only if order useful
(union,...)

AVL Trees comparison logarithmic average
and worst case

logarithmic average
and worst case

prefer if immutability
is required

Mutdicts term hash constant, depend-
ing on key size

constant, depends on
key size

very fast, use if appro-
priate

Mutarray array index constant constant like mutdicts, but only
intkeys

Blackboard undocumented* undocumented† undocumented similar performance as
fact data base

Facts first argument
functor

constant † constant, but linear
on collisions

similar performance as
blackboard (cf. above)

Legend: *: probably key atom/integer; †: copies term, hence linear in size of term
being inserted

Lists are singly linked finite sequences of unordered elements, potentially with
duplicates. Thus, it is possible to insert an element in constant time (as it can be
appended to the front). In contrast, to check whether an element is contained,
in the worst case one needs to iterate over the entire list, resulting in a linear
runtime linear in its length (but not in the size of distinct elements). In order
to mimic an associative data structure, one can store terms in the form of, e.g.,
Key-Value; in our benchmarks however, we only store the key.

Deduped Lists are the same as the lists above, but with a different insertion
predicate which checks whether the term is already contained. In the worst case,
the entire list is scanned before an element is found or the insertion can occur,
yielding a runtime linear in the size of its elements. As deduped lists use the
same member/2 predicate for accessing elements as lists, we do not benchmark
this operation seperately.

Ordered Sets are provided by the library ordsets. Internally, they are ordered
lists without duplicates. They enable linear implementations for set operations
like intersection, union or difference. For both the access and insertion operation
a runtime linear in the set size is expected on average.
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AVL Trees (see, e.g., Section 6.2.3 of [3]) are self-balanced binary search trees. In
Prolog, they are used for a tree implementation of “association lists”. In theory,
AVL Trees have a runtime that is logarithmic in the number of stored elements
for both the access and insertion operation.

Mutdicts are unordered key-value collections, that are not term-based but use
a hash table representation introduced in SICStus 4.7.0. Yet, they also support
backtracking. The expected average runtime of both operations is constant in
practice (in the absence of hash collisions). On rare occasions, update operations
can take linear time.

Mutarrays are a SICStus Prolog implementation of dense arrays, also added
in SICStus 4.7.0. They are a special case of Mutdicts and provide a mapping
from an integer to an arbitrary value. Because arrays throw an exception if an
index out of bounds is accessed, one cannot access indices that are not contained
(too large, or negative). We expect both insertion and random access to run in
constant time in practice. Note that even though Mutdicts and Mutarryas are
mutable, the operations on them can still be backtracked.

Blackboards are a per-module repository to store elements as key-value pairs.
Keys must be integer or atoms. It is expected that they perform well for both
the insertion and access operation. The likely runtime of both operations is
constant in the size of the data structure and linear in the key size.

Facts can be added dynamically to the Prolog clause database using assert/1.
The insertion operation is expected to perform in constant time regardless of
the amount of stored elements, yet linear in the size of the stored key-value pair
(as it is copied). The access operation, may vary depending on the key type.
This is because facts are indexed on the functor of the first argument (i.e., the
functor of the key, as we assert a term mydb(Key, Value)). A constant (wrt.
the size of the fact data base) runtime is likely for the insert operation. For the
access such a fact with atoms or integer values as keys, a constant runtime is
also predicted. When compound terms are used as keys, the runtime may be
linear in the number of facts, depending on how often the functor of the keys is
re-used.

2.2 Data Generation

In our benchmarks, we generate random keys to (i) construct, (ii) access or (iii)
insert into the data structures. Values, on the other hand, will always be the
atom true. Below, we describe how the different types, or rather patterns, of
key types are generated.

rannumbers is used to generate integer values as keys. The data structure of size
N will be generated by inserting a random order of the numbers 1, 2, . . . , N . In
order to generate a key that is definitely known, numbers are drawn randomly
from the same interval. If keys are required that are not contained in the data
structure, reasonable values are −1 oder N + 1.
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rannumbers10 is similar to the rannumbers pattern. However, the base data
only contains all multiples of 10, i.e. the sequence 10, 20, N ∗ 10. This allows
benchmarking accessing keys that are not contained in the data structure, yet
would be placed somewhere “in the middle”. Uncontained keys are generated by
drawing a number that is contained and randomly subtracting a value from 1 to
9.

ranatoms is used to generate atoms as keys. To generate N atoms, we first draw
an integer from 1, . . . , N (a seed), and, second, use this integer to generate two
random ASCII characters c1 and c2. The generated atom will then have the
shape: myatom_c1c2seed. To generate atom that are not contained, we use the
same idea, but employ N + 1 or N ∗ 2 as seeds.

rancompound is used to generate compound terms for keys. Just like atoms, N
compound terms are generated by drawing an integer from 1, . . . , N (a seed). The
seed is used to generate two ASCII values i1 and i2, which correspond to charac-
ters c1 and c2. Ultimately, the term will have the shape: term_c1(term_c2(seed,i2,i1)).
Terms that are not contained in this set are generated by using either N + 1 or
N ∗ 2 as the seed.

3 Results

In this section, we summarize the data collected from the benchmarks. We will
first focus on a random access operation, and investigate insertions afterwards.

3.1 Random Access

In order to benchmark the (random) access operation, we instantiate (a) a list
of elements that will be inserted into the data structure, (b) a list of elements
that we will access, and, optionally, (c) a list of elements that are not contained
that we try to access. We measure many iterations of the same operation in one
benchmark to avoid errors due to clock resolution. The list of elements (b) are
generated randomly as described in Section 2.2 in order to avoid, e.g., always
accessing the first element in the list. In theory, this will let us compare the
average case between different data structures.

Below, we will consider (i) integers as keys, (ii) atoms and compound terms as
keys and (iii) the influence of attempting to lookup keys that are not contained.

Integer Keys In our first experiment, we used integer values as keys. The
runtimes of 1 000 000 accesses for different data structures in relation with the
size of the data structure can be seen in Fig. 1.

Results As expected, lists and ordered sets perform linearly. However, for very
small data structures (less than 15 elements), lists perform better than AVL
trees. For even smaller sizes (less than 5 elements), they even beat mutable data
structures. Up to size 25, AVL trees seem to perform better than facts.
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(a) Up to data structure size 10 000. The
plots for lists and ordered sets are hard
to distinguish near the Y-axis.

(b) Close-up of data structure sizes 0–
100.

Fig. 1: Runtime of 1 000 000 random accesses depending on the data structure
size.

Surprises Ordered sets have, on average, a worse runtime than lists. This is
due to the extra comparisons that are made while traversing the internal list.
The overhead here, however, is more significant than we expected. We also did
not expect that (a) the mutable data structures are more than 2× faster than
accessing dynamic facts. The mutable array seems to be outperformed by the
mutable dictionary. Further, the blackboard primitive is even slower than the
dynamic database.

Atoms and Compound Terms as Keys Next, we investigated what influence
the data type of the key has; first, by using atoms and, second, by employing
compound terms. The results are depicted in Fig. 2a and Fig. 2b, respectively.
Note that mutable arrays only support integer indices, and the blackboard prim-
itive does not allow compound terms as keys. Thus, we could not include them
in the results.

Results Using non-integer keys made the runtime vary significantly. However, the
overall trend remains, that ordered sets are the slowest data structure, followed
by the list. On the other hand, the mutable dictionary is still the fastest. We can
see, however, that the blackboard is slightly faster than the dynamic database
if the keys are atoms.

Surprises Once compound terms are used as keys, however, AVL trees are signif-
icantly faster than the dynamic database. This may be due to the low variance
in the generated functors used for indexing. However, in typical applications,
names for functors are very limited as well.

Varying the Miss Chance So far, we have considered only successful lookups.
In Fig. 3, we now consider the runtime for a fixed-size data structure in relation to
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(a) Atoms as keys. (b) Compound terms as keys.

Fig. 2: Runtime of 1 000 000 access operations in relation to the data structure
size.

how many unsuccessful lookup attempts are made. This experiment uses random
integers again, in particular the rannumbers10 pattern. Figs. 3a and 3b show
the same benchmark of size 10 000, but as the runtimes for lists and ordered sets
are in different orders of magnitude, they are shown separately.

Results As the miss chance increases, lists become slower. This is expected, as
for every missed item, the entire list must be traversed. All other data structures,
however, are getting faster or remain unaffected. There seems to be a sweet spot
between 40–60% miss rate where ordered sets and lists produce the same runtime
on average.

Again, the mutable dictionary outshines all other data structures. The dy-
namic database is faster than AVL only for larger data structures, and its runtime
is only little influenced by the miss chance.

Surprises Ordered sets perform worse than expected here. The miss chance
must be pretty high for them to even beat lists. In any case, using any other
data structure does no harm, even for small sizes.

Atoms and Complex Terms as Keys Due to page limitations, we omit corre-
sponding figures. For these types, ordered sets perform even worse and were
unable to beat lists when the size was 10 000. They seem to be more efficient
with a very high miss chance for data size 10 when using compound terms, and
data size 15 when using atoms as keys — but not vice versa.

3.2 Insertion

The insert benchmark is performed similar to the access benchmark. First, a
data structure x with N elements is generated. Note that this might not be in a
specific order. Then, a list of elements to insert in this data structure is generated
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(a) Data structure size 10 000 (b) Data structure size 10 000

(c) Data structure size 10. (d) Data structure size 15.

Fig. 3: Runtime of 1 000 000 access operations in relation to the miss chance for
some data structure sizes.

— these might be already contained or not. The resulting data structure is
discarded (unless mutable) and further insertions are repeated on x.

Below, we will consider (i) integers as keys, (ii) atoms and compound terms
as keys and (iii) the influence of a fetch check for AVL trees.

Integer Keys As before, we will first start with integer keys. The results can
be seen in Fig. 4.

Results As expected, a list insertion that does not check for duplicates is the
fastest operation so that the plot is hard to distinguish from the X-axis. There
seems to be no difference between inserting in a mutable dictionary and in a
mutable array. The blackboard performs better than the dynamic database.
AVL trees get slower with size. To no surprise, lists that check for duplicates
and ordered sets are quickly off the chart.

Surprises Ordered sets perform worse than iterating over the entire list to scan
for duplicates. Mutable data structures perform about five times better than
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(a) Up to data structure size 10 000. The
plots for mutdicts and mutarrays over-
lap. The plot for lists is hard to distin-
guish from the X-axis, the ones for or-
dered sets and deduped lists are close to
the Y-axis.

(b) Close-up of data structure sizes 0–
100. The plots for mutdicts and mutar-
rays overlap.

Fig. 4: Runtime of 1 000 000 random insertions depending on the data structure
size.

the dynamic database. This is surprising as we expected that the overhead for
indexing and hashing to be similar.

Atoms and Compound Terms as Keys We are again interested in the
influence of the data type of the key on the runtime. We will once again use
atoms (Fig. 5a) and compound terms (Fig. 5b). As before, we do not include
data structures that do not support those key types.

Results The overall results are similar to the ones for integer keys. Yet, for small
data structures, in particular for regarding compound terms, the picture is less
clear. There, it seems to depend more on the concrete actual values. However,
the mutable dictionary is still a safe bet.

Surprises There is no further upset here.

AVL Fetch Check In further experiments, we were surprised that inserting
into the AVL tree seems to perform differently depending on whether data was
already contained or not. Thus, we experimented with adding a “fetch check” to
the AVL, as depicted in Listing 1.1: instead of just storing the element, we first
perform a fetch and check, whether the resulting element is already stored. If
so, we can avoid storing the value, and need to copy it only otherwise. In other
words, we compare the lookup of a value with a full write in this particular
experiment.

In this experiment, we tried to store key-value pairs that were already con-
tained. The results are depicted in Fig. 6.
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(a) Atoms as keys. (b) Compound terms as keys.

Fig. 5: Runtime of 1 000 000 insert operations in relation to the data structure
size.

Listing 1.1: AVL store with fetch check predicate
avl_store_fetch_check ([],A,A).
avl_store_fetch_check ([H|T],In ,Out) :-

(avl_fetch(H,In,true) -> In2=In ; avl_store(H,In,true ,In2)),
avl_store_fetch_check(T,In2 ,Out).

Results In Fig. 6a, we consider an AVL tree with a fixed size of 100 000 elements
and depict the runtime in relation to the number of insert operations. Since the
tree does not increase in size, we can observe a rough linear increase in runtime
depending on the number of accesses. Replacing the term seems to cost more
than double than just accessing it.

We vary the data structure size but keep the operation count fixed in the
experiment whose results we show in Fig. 6b. Thus, we see the typical logarithmic
curve for AVL trees. It seems like the fetch check is more important the larger
the data structure.

4 Discussion

In this article, we shared some of our experiments regarding the runtime per-
formance of Prolog data structures. Some of them also served as a stress test,
discovering a segmentation fault in earlier versions of SICStus’ mutable data
structures.

Conclusions Due to the sheer number of possible access patterns and other
factors that might influence the choice of an appropriate data structure, it is
hard to draw conclusions that are universally valid. Regardless, we try our best:
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(a) Runtime in relation to the operation
count for an AVL tree of size 100 000.

(b) Runtime of 1 000 000 insertions in re-
lation to the size of the AVL tree.

Fig. 6: Comparison of the performance of insertions into AVL trees with and
without a fetch check. The key-value pair to be stored is already contained.

– use data structures that are not term-based, such as mutdicts or mutarrays,
if available and appropriate;

– ordered sets can be surprisingly slow due to extra term comparisons — avoid
unless you depend heavily on the ordering (e.g., to obtain linear complexity
for set operations like union, intersection and difference);

– lists are very performant if sufficiently small (about less than 15 elements);
– if you often overwrite data with itself in an AVL tree, adding a lookup makes

you faster;
– AVL trees make a good all-round default: they are immutable, sufficiently

fast, but their terms usually are not easily readable;
– operations that copy terms can be a serious efficiency bottleneck, in partic-

ular inserting into a blackboard and asserting to the fact database;
– as blackboards are scoped to an entire module and only allow atoms and

numbers as keys, they can be very inconvenient if several data structures need
to be maintained. In particular, one cannot easily instantiate several copies,
and instead has to create keys with specific prefixes using, e.g., atom_concat.

4.1 Future Work

The conclusions outlined above are preliminary and will ultimately not suffice
to pick the most appropriate data structure. More data is needed, in particular
on:

More Operations In this paper, we focused on lookup and insertion operations.
However, there are more operators that are often used, e.g., the initial construc-
tion of the data structure, update and removal of data, as well as the union
of two data sets (e.g., concat). Additionally, we did not consider how the data
structures behave during backtracking. Further insights on the runtime of these
operations are ultimately required for an informed selection of a data structure.
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Better Generators While our data generators uncovered differences between dif-
ferent data types, such as numbers, atoms and compound terms, the generated
values are not really realistic. Typically, they have significantly more variance
(in case of names) or less variance (in case of term functors). Terms might also
be significantly deeper nested and larger in the argument count. All this may
influence the runtime needed to make comparisons and to calculate hashes.

More Benchmarks There are more real-world scenarios that might be worthwhile
to investigate: access often is not randomly but sequential instead (just getting
all data, converting an AVL tree to lists, . . . ). We also attempted to collect data
on used memory; however, the results fluctuate too heavily. Here, one would
require better insight on the allocated memory from the Prolog system.

More Prolog Implementations and Data Structures So far, we have only run our
experiments with SICStus Prolog. Other systems offer different standard libraries
or slightly different versions of the data structures. Further, SWI-Prolog offers an
implementation of dictionaries [8], B-Prolog implements hashtables and various
systems implement some form of arrays. Thus, our results need to be validated
for other Prolog systems as well. It would also be interesting to investigate more
tree-based data structures.

Detailed Investigation of Outliers For some data structure sizes, we noticed weird
outliers, both positive and negative. However, we were able to reproduce them
consistently — even with different random seeds. We want to investigate those
in more detail to gain a better understanding what is happening for these data
points.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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