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Abstract. Logic programming has a long history. The representative of
logic programming in practice, the language Prolog, has been introduced
more than 50 years ago. The main features of Prolog are still present
today: a Prolog program is a set of predicate definitions executed by
resolution steps with a backtracking search strategy. The use of back-
tracking was justified by efficiency reasons when Prolog was invented.
However, its incompleteness destroys the elegant connection of logic pro-
gramming and the underlying Horn clause logic and causes difficulties to
teach logic programming. Moreover, the restriction to predicates hinders
an adequate modeling of real world problems, which are often functions
from input to output data, and leads to unnecessarily inefficient exe-
cutions. In this paper we show a way to overcome these problems. By
transforming predicates and goals into functions and nested expressions,
one can evaluate them with a demand-driven strategy which might re-
duce the number of computation steps and avoid infinite search spaces.
Replacing backtracking by complete search strategies with new imple-
mentation techniques closes the gap between the theory and practice of
logic programming. In this way, we can keep the ideas of logic program-
ming in future programming systems.

1 Introduction

Logic programming was developed as a restriction of the general resolution prin-
ciple [34] to Horn clauses so that efficient linear (SLD-resolution) proofs can be
constructed (see also [14] for some historical background). It became popular
when concrete implementations in the form of interpreters (and later compilers)
for the programming language Prolog were available. Horn clauses and SLD-
resolution are tightly connected to mathematical logic. The soundness and com-
pleteness of SLD-resolution establish the foundation of logic programming [28].
Unfortunately, the memory restrictions of computers at that time caused a gap
between these theoretical foundations and the practice of logic programming in
Prolog: non-deterministic computations are evaluated by backtracking so that
the theoretical completeness of SLD-resolution is lost. For instance, consider the
definition of a Prolog predicate relating a list and its last element:

last([H|T],E) :- last(T,E).

last([E],E).



This definition works when the list is known:

?- last([1,2,3],E).

E = 3

One of the advantages of logic programming is the absence of fixed input and
output parameters. Instead of providing a known value for an argument of a
predicate, one can also call the predicate with a free variable for this argument
(as E above) so that a result is computed by binding this variable to some value.
In practice, this advantage is often lost when non-deterministic search is imple-
mented by backtracking, since infinite branches in a search tree might preclude
the computation of valid answers. For instance, Prolog does not compute any
result for the definition of last, as shown above, when the list is unknown,
e.g., for the goal last(L,3): the backtracking strategy causes an infinite chain
of applications of the first rule. This shows the gap between the theory of logic
programming, where the complete SLD-resolution method yields an infinite set
of answers to this goal, and the practice of logic programming implemented with
the language Prolog.

Compared to functional programming, logic programming is often considered
as the more flexible and expressive programming paradigm [32]. This is no longer
true if we consider functional logic languages [6], such as Curry [23], which
amalgamates features of functional and logic programming and does not force
the programmer to model all knowledge in the form of predicates. Actually, many
real world problems can be modeled in a more adequate format in the form of
functions mapping input data to output data. With a functional logic language,
one has the same expressiveness as in logic programming since any (pure) logic
program can be transformed into a functional logic program so that the same
solutions are computed, as we discuss in this paper. Moreover, the equivalent
functional logic programs behave more efficiently and can avoid infinite search
spaces.

Example 1. Consider the following Prolog program which defines the well-known
predicate app relating two lists to their concatenation and a predicate app3 re-
lating three lists to their concatenation:

app([],Ys,Ys).

app([X|Xs],Ys,[X|Zs]) :- app(Xs,Ys,Zs).

app3(Xs,Ys,Zs,Ts) :- app(Xs,Ys,Rs), app(Rs,Zs,Ts)

When evaluating the goal app3(Xs,Ys,Zs,[]), a Prolog system yields the answer
{Xs 7→[], Ys7→[], Zs7→[]}, but it does not terminate when searching for more
answers. Similarly, Prolog systems do not terminate when evaluating the goal
app3(Xs,[1],Zs,[]). This is different if we translate the predicates into functions
by considering the last argument as output, as often intended when formulat-
ing functional knowledge as predicates. For instance, the tool described in [18]
translates these definitions into the following Curry program:

app [] ys = ys

app (x:xs) ys = x : app xs ys

app3 xs ys zs = app (app xs ys) zs



Since Curry exploits functional dependencies between input and output data
to implement a demand-driven strategy, the equations (which are equivalent to
the goals above) app3 xs ys zs =:= [] and app3 xs [1] zs =:= [] have finite search
spaces so that the evaluation in Curry terminates.

In summary, we can see that the basis of Prolog, i.e., predicates and backtracking,
has various disadvantages:

– The theoretical completeness of SLD-resolution is lost.
– Backtracking hinders teaching the ideas of logic programming since beginners

are often faced with the influence of the search strategy.
– Programmers have to think about the influence of backtracking to the success

of computations—a contradiction to the idea of declarative programming.
– The use of predicates instead of functions yields a flat structure of goals so

that functional dependencies cannot be exploited to avoid useless search.

In this paper we argue that all these problems can be avoided without loosing the
flexibility of logic programming by using functional logic programming instead
of pure logic programming. Functions are helpful to reduce the number of com-
putation steps and avoid infinite search spaces. Contemporary functional logic
languages, such as Curry, do not fix a deterministic backtracking strategy for
search but support complete search strategies.1 Thus, abandoning backtracking
in logic programming is similar to the removal of the von Neumann bottleneck
by functional programming [10]: it supports a higher, declarative programming
style which frees the programmer from thinking about low-level control details.

In the following, we sketch2 methods to get rid of predicates and backtrack-
ing. This can be done in a systematic way by transforming logic programs into
functional logic programs on which efficient, often optimal, and complete eval-
uation strategies can be applied. To explain this method, we review the basics
of logic and functional logic programming in the next section. Then we show
how to transform pure logic programs into functional logic programs and how to
apply efficient and complete evaluation strategies on the transformed programs.

The message of this paper is to show that functional logic languages are
always preferable to pure logic languages. Transforming logic into functional
logic programs is the formal justification. If one accepts this message, one should
directly implement the desired application in a functional logic language and
exploit all useful features of such languages, like declarative I/O [37], functional
patterns [4], strategy-independent encapsulated search [5], default rules [7], etc.

2 Logic and Functional Logic Programming

We briefly review some notions and features of logic and functional logic pro-
gramming. More details can be found in [28] and in surveys on functional logic
programming [6,17].

1 Note that this is not the case for all such languages. For instance, the functional
logic language Verse [8] fixes a deterministic, backtracking-like search strategy.

2 More details can be found in [11,18] on which this paper is partially based.



We use Prolog syntax to present logic programs. Terms in logic programs
are constructed from variables (X,Y, . . .), numbers, atom constants (c, d, . . .),
and functors or term constructors (f, g, . . .) applied to a sequence of terms, like
f(t1, . . . , tn). A literal p(t1, . . . , tn) is a predicate p applied to a sequence of
terms, and a goal L1, . . . , Lk is a sequence of literals, where □ denotes the empty
goal (k = 0). Clauses L :- B define predicates, where the head L is a literal
and the body B is a goal (a fact is a clause with an empty body □, otherwise it
is a rule). A logic program is a sequence of clauses.

Logic programs are evaluated by SLD-resolution steps, where we consider
the leftmost selection rule here. Thus, if G = L1, . . . , Lk is a goal and L :- B

is a variant of a program clause (with fresh variables) such that there exists a
most general unifier3 (mgu) σ of L1 and L, then G ⊢σ σ(B,L2, . . . , Lk) is a
resolution step. A computed answer for a goal G is a substitution σ (restricted
to the variables occurring in G) which is composed of all unifiers of a sequence
of resolution steps from G to □.

Example 2. Consider the predicates of Example 1 and the list reversal

rev([],[]).

rev([X|Xs],Zs) :- rev(Xs,Ys), app(Ys,[X],Zs).

The predicate pali relates a palindrome with its middle element:

pali(Zs,X) :- app3(Xs,[X],Ys,Zs), rev(Xs,Ys).

Prolog computes for the goal pali([1,2,3,2,1],M) the answer {M 7→ 3} but then
it does not terminate, since it enumerates arbitrary large values for Xs. Similarly,
it does not terminate on pali([1,2],M).

Functional logic programming [6,17] integrates the most important features of
functional and logic languages, such as higher-order functions and lazy (demand-
driven) evaluation from functional programming and non-deterministic search
and computing with partial information from logic programming. The declara-
tive multi-paradigm language Curry [23], which we use in this paper, is a func-
tional logic language with advanced programming concepts. Its syntax is close to
Haskell [31], i.e., variables and names of defined operations start with lowercase
letters and the names of data constructors start with an uppercase letter. The
application of an operation f to e is denoted by juxtaposition (“f e”).

In addition to Haskell, Curry allows free (logic) variables in program rules
(equations) and initial expressions. Function calls with free variables are eval-
uated by a possibly non-deterministic instantiation of arguments. Similarly to
Prolog and in contrast to Haskell, Curry evaluates operations defined by rules
with overlapping left-hand sides in a non-deterministic manner by applying all
possible rules. The archetype of an operation defined by overlapping rules is the
non-deterministic choice, defined in Curry [23] as the infix operator “?” by

x ? _ = x

_ ? y = y

3 Substitutions, variants, and unifiers are defined as usual [28].



Hence, “0 ? 1” yields two values: 0 and 1. In contrast to Prolog, the concrete
strategy to compute these values, i.e., the search strategy, is not fixed in Curry
so that implementations of Curry can provide various search strategies.

Example 3. The following Curry program4 defines the predicates of Example 2
in a functional manner, where logic features (like the free variables xs and x) are
exploited to define pali:

rev [] = []

rev (x:xs) = app (rev xs) [x]

pali zs | zs =:= app3 xs [x] (rev xs)

= x

“|” introduces a condition, and “=:=” denotes semantic unification, i.e., the
expressions on both sides are evaluated before unifying them.

Since app and app3 can be called with free variables in arguments, the condition
in the definition of pali is solved by instantiating xs and x to appropriate values
(i.e., expressions without defined functions) before reducing a function call. This
corresponds to narrowing [33,35]. t ⇝σ t′ is a narrowing step if there is some
non-variable position p in t, an equation (program rule) l = r, and an mgu σ
of t|p and l such that t′ = σ(t[r]p),

5 i.e., t′ is obtained from t by replacing the
subterm t|p by the equation’s right-hand side and applying the unifier. Condi-
tional equations l | c = r are considered as syntactic sugar for the unconditional
equation l = c &> r, where “&>” is defined by True &> x = x.

Curry is based on the needed narrowing strategy [2] which uses non-most-
general unifiers in narrowing steps to ensure the optimality of computations.
Needed narrowing is a demand-driven evaluation strategy, i.e., it supports com-
putations with infinite data structures [26] and can avoid superfluous compu-
tations so that it is optimal w.r.t. the number of computed solutions and the
length of derivation [2]. This is our motivation to transform logic programs into
Curry programs, since it can reduce infinite search spaces to finite ones. For in-
stance, the evaluation of the expression pali [] has a finite computation space:
the generation of larger lists for the first argument of app3 is avoided since there
is no demand for such numbers.

Curry has many more features which are useful to implement applications,
like set functions [5] to encapsulate search, and standard features from functional
programming, like modules or monadic I/O [37]. However, the kernel of Curry
described so far should be sufficient to understand the remaining contents.

Early implementations of functional logic languages, like PAKCS [3] or TOY
[29], used Prolog as a target language due to its built-in support for non-
determinism. A drawback of this approach is that they inherit the incompleteness
of Prolog’s backtracking strategy. In order to get rid of this fixed search strategy,
subsequent implementations are based on the idea to represent non-deterministic

4 The concrete syntax is simplified by omitting the declaration of free variables, like
x and xs, which is required in Curry programs to enable consistency checks by the
compiler.

5 We use common notations from term rewriting [9].



choices as data. Instead of directly evaluating non-deterministic branches, the al-
ternatives are returned as a tree structure so that search strategies can be defined
as tree traversals, which supports an easy switch between different strategies. For
instance, the Curry system KiCS2 [12] and Curry2Go [11] have options to select
different search strategies, like depth-first, breadth-first, or fair search.

3 From Predicates to Functions

This section discusses methods to transform logic programs into functional logic
programs by mapping predicates and goals into functions and nested expressions.
Since predicates can be viewed as Boolean functions, the simplest transformation
maps each predicate into a Boolean function and each clause into a (conditional)
equation. For instance, the clauses of predicate app shown in Example 1 can be
transformed into

app [] ys ys = True

app (x:xs) ys (x:zs) | app xs ys zs = True

This conservative transformation [18] does not change the structure of deriva-
tions since narrowing steps on Boolean functions correspond to resolution steps.
Thus, there is no real advantage to perform this transformation.

To exploit the computational power of functional logic languages, predicates
should be transformed into non-Boolean functions by selecting some arguments
as results and generating function definitions according to this selection.

Example 4. Consider again predicate app of Example 1. If the third argument is
selected as a result argument (as often intended in logic programs), the clauses
of app can be transformed into the following functional logic program:

app [] ys = ys

app (x:xs) ys | zs =:= app xs ys = x:zs

Although any set of argument positions can be selected as results, there are
heuristics to select result arguments so that optimal evaluations are ensured for
large classes of programs, as discussed in [18].

It is shown in [18] that, even if this functional transformation is used, there is
a strong one-to-one correspondence, independent of the selection of result ar-
guments, between resolution derivations w.r.t. the original logic program and
narrowing derivations w.r.t. the transformed program. To improve this situation
and get some computational advantage, one has to replace the unification occur-
ring in conditions by let bindings whenever possible6 and inline these bindings
if reasonable. For instance, one can transform the rule

app (x:xs) ys | zs =:= app xs ys = x:zs

into

app (x:xs) ys = let zs = app xs ys in x:zs

6 This is possible when the variable in the left-hand side of the unification has no
occurrences in result arguments of other goal literals, see [18] for a precise discussion.



and inline the binding of zs into

app (x:xs) ys = x : app xs ys

This demand functional transformation is described in detail in [18]. If the trans-
formed program is eagerly evaluated, i.e., the arguments of a function call are
evaluated before replacing the function call by its body (“call by value”), there
is no operational difference between programs transformed by the functional and
the demand functional transformation. This situation changes when the argu-
ments are evaluated “by need,” as in Haskell or Curry and discussed in [25,26].

Example 5. Consider the predicate siglist defined by the clauses

siglist([],zero).

siglist([_],one).

siglist([_,_|_],many).

The demand functional transformation yields

siglist [] = Zero

siglist [_] = One

siglist (_:_:_) = Many

Now consider the evaluation of the expression siglist (app xs ys), where xs is
a long list with n elements. An eager evaluation requires n + 1 rewrite steps,
whereas a non-strict language needs only three steps.

Although it seems that the demand functional transformation is the way to
go, there is one potential problem of this transformation: it might change the
semantics, i.e., the set of computed solutions. This could be the case if the
evaluation of some subexpression is not demanded and its evaluation would fail
to yield a value. This failure would be propagated in the original logic program,
but it might be “hidden” in the transformed program. For instance, consider a
predicate relating a non-empty list with its tail

tail([_|Xs],Xs).

and its application in the predicate

sigtail(S) :- tail([],Xs), app([0,1],Xs,Ys), siglist(Ys,S).

Due to the failure of the first subgoal, the goal “?- sigtail(S).” fails. However,
the demand functional transformation yields

tail (_:xs) = xs

sigtail = siglist (app [0,1] (tail []))

The demand-driven or lazy evaluation of sigtail, which performs only necessary
reductions, yields the value Many. This is conform to the mathematical principle
of “replacing equals by equals” but it changes the set of answers w.r.t. the original
logic program.

It is possible to modify the transformation so that the transformed functional
logic program computes only more general answers than the original logic pro-
gram, i.e., each answer of the functional logic program is a generalization of an
answer computed by the logic program. Computing more general answers is also
preferable in pure logic programming since it results in smaller search spaces.



As shown in [19], the demand functional transformation yields programs so
that needed narrowing is sound and complete w.r.t. the logical consequences of
the logic program, where soundness requires that all functions are totally defined.
Hence, if there are also partially defined functions, one has to ensure that every
occurrence of such a function in a computation will eventually be evaluated. This
can be obtained by a slight modification of the demand functional transformation
which is called fail-sensitive functional transformation. If a rule’s right-hand
side contains an application (f e) and the evaluation of the expression e might
fail to compute a value, i.e., it contains a partially defined function, then this
application is replaced by

(f $! e)

“$!” denotes function application with a strict evaluation of argument e. Thus,
if the evaluation of e fails, the evaluation of (f $! e) fails.

For instance, the fail-sensitive functional transformation maps the definition
of predicate sigtail into

sigtail = siglist $! (app [0,1] $! tail [])

Then the evaluation of sigtail leads to a failure due to the enforced evaluation
of (tail []). Note that the operator “$!” must be inserted at all places where a
potentially failing expression occurs and not only where the failing expressions
occurs first.

The fail-sensitive functional transformation requires information whether op-
erations are totally defined. Since this is undecidable in general, one can approxi-
mate this property by splitting it into two parts: termination and non-occurrence
of failures due to incomplete patterns, as visible in the definition of tail.

Termination of rewrite systems or functional programs is well-studied so that
various techniques are available to approximate this property, e.g., [16,27]. To
approximate absence of failures, one could simply mark a function as failing
if it is defined with an incomplete set of patterns or call a failing function in
its right-hand side. This results in a fixpoint computation of this property. This
simple approximation can be improved by considering the context of using failing
functions in right-hand sides. For instance, the following function uses the failing
function tail but it is totally defined since tail is called with a non-empty list:

tailOrEmpty [] = []

tailOrEmpty (x:xs) = tail (x:xs)

The tool described in [20] approximate the failing property of functions by ap-
proximating call types for functions, which ensures a fail-free evaluation, and
using call types to approximate the failure status of functions. For instance, the
call type of tail are all non-empty lists so that the call of tail in the second rule
of tailOrEmpty does not cause a failure. Hence, tailOrEmpty is totally defined.
In practice, only a few operations of larger programs have non-trivial call types,
i.e., might fail on specific arguments.7

7 This requires also the consideration of intended types. For instance, app is totally
defined on lists, which are the intended arguments, although app fails on the unin-
tended argument 42. The consideration of type information is discussed in [19].



Language: Prolog Prolog Curry
System: SWI 9.0.4 SICStus 4.9.0 KiCS2 3.1.0

rev_4096 0.23 0.22 0.10
tak_27_16_8 6.97 3.23 0.74
ackermann_3_9 2.13 8.72 0.07
pali_[] ∞ ∞ 0.01
siglist_app_0 ∞ ∞ 0.01
numleaves_7 ∞ ∞ 0.01
permsort_10 1.43 0.28 0.03
permsort_11 16.16 1.38 0.08
permsort_12 206.34 15.23 0.28

Table 1. Execution times (in seconds) of Prolog and generated Curry programs

Exploiting such tools, one can implement the fail-sensitive functional trans-
formation in three steps. First, the logic program is transformed with the demand
functional transformation as described in [18]. Then, the generated program is
analyzed with the failure-inference tool described in [20] (automated termination
checks are currently omitted since it is seldom that operations generated from
Prolog are completely defined but non-terminating). Based on the failure infor-
mation, the transformed program is modified by replacing function applications
(f e) by (f $! e) whenever the expression e might fail.

This transformation produces functional logic programs which compute the
same or more general answers compared to the original logic programs. In the
worst case (if all functions are possible failing), the same number of evaluation
steps are performed, but in many other cases, the transformation reduces the
number of computation steps (due to the optimality of needed narrowing) so that
infinite search spaces might be reduced to finite ones. Thus, the transformation
has no disadvantage but in some cases one gets considerable improvements.

To evaluate this transformation, we have implemented a tool performing the
fail-sensitive functional transformation as described above.8 Table 1 contains
the results of executing various Prolog programs with SWI-Prolog and SICStus-
Prolog and the Curry programs obtained by applying the fail-sensitive func-
tional transformation with the Curry system KiCS2 [12]. KiCS2 compiles Curry
programs into Haskell and uses the Glasgow Haskell Compiler (GHC 9.4.5) to
generate machine code.9 The examples, which can be found in the appendix,
are small programs since larger Prolog programs are seldom logic programs—
they often use non-declarative features. Such non-declarative features are either
not necessary in functional logic programs (e.g., cuts are replaced by exploiting

8 The tool, available at https://cpm.curry-lang.org/pkgs/prolog2curry-1.2.0.html, is imple-
mented as a Curry package for easy installation. A script together with all required
tools is available as a docker image at https://hub.docker.com/r/currylang/prolog2curry.

9 The benchmarks were executed on a Linux machine running Ubuntu 22.04 with an
Intel Core i7-1165G7 (2.80GHz) processor with eight cores. The time is the total run
time of executing a binary generated with the Prolog/Curry systems.

https://cpm.curry-lang.org/pkgs/prolog2curry-1.2.0.html
https://hub.docker.com/r/currylang/prolog2curry


functional dependencies) or can be reformulated in a declarative manner (e.g.,
declarative monadic I/O, state monads).

The first three benchmarks are purely deterministic computations. rev-4096
is the naive list reversal applied to a list of 4096 elements. tak-27-16-8 applies
the highly recursive tak function [30] to the values (27,16,8) in Peano represen-
tation. The Ackermann function, defined on Peano numbers, is applied to the
Peano representation of (3,9). For these functions, the demand-driven evalua-
tion strategy has no real advantage since the values of all subexpressions are
required. The situation is different in the next three benchmarks where the orig-
inal logic program has an infinite search space and the transformed functional
logic program has a finite search space, similarly to Example 1. pali-[] denotes
the evaluation of pali([],M) (see Examples 2 and 3), siglist_app_0 denotes the
evaluation of the goal “app(Xs,[],Zs), siglist(Zs,zero)”, and numleaves-7 de-
notes the generation of all binary trees with seven leaves. Since Table 1 shows the
time to compute all answers to the given goals, the Prolog systems do not termi-
nate due to the infinite search spaces. The final benchmarks, permutation sort
applied to lists containing 10, 11, and 12 decreasing Peano numbers, demon-
strates the advantage of demand-driven evaluation even if the search space is
finite. As discussed at various places [6,17], the functional logic version explores
permutations in a demand-driven manner so that not all permutations are actu-
ally generated. Thus, our transformation maps a “generate-and-test” algorithm
into a more efficient “test-of-generate-as-demanded” algorithm with a lower com-
plexity, as apparent from the benchmarks.

4 From Backtracking to Complete Search Strategies

As already mentioned, Prolog is based on backtracking to deal with “don’t know”
non-deterministic resolution steps. This was a way to deal with limited hardware
resources when Prolog was invented. Since this strategy is fixed for Prolog [15], it
has the unfortunate consequence that many non-logical features, like input/out-
put, arithmetic, search-space pruning (cut), depend on this strategy so that it
is not easy to change it in real-world applications of Prolog. However, in order
to close the gap between theory and practice of logic programming, support a
higher-level understanding of programs, and improve the situation when teaching
logic programming, complete search strategies are necessary.

Curry does not fix backtracking or depth-first search so that implementations
can support other search strategies—there are no language features depending on
backtracking. For instance, PAKCS [3,21] compiles into Prolog so that backtrack-
ing search is used. KiCS2 [12] compiles Curry programs into Haskell programs
and represent the search space as a tree structure on which search strategies
are defined so that one can switch between depth-first (DFS) or breadth-first
search (BFS), among others. Curry2Go [11] compiles Curry programs into Go10

programs. Go is a statically typed language with garbage collection and direct

10 https://golang.org/

https://golang.org/


PAKCS KiCS2 Curry2Go
Example DFS BFS DFS BFS FS

nrev-4096 6.29 0.10 0.10 0.85 0.85 0.85
takPeano-24-16-8 56.78 0.12 0.12 8.05 7.98 7.76
primesHO-1000 29.46 0.04 0.04 3.51 3.58 3.55
psort-13 18.92 0.35 2.32 7.11 7.25 9.51
addNum-2 0.18 0.24 0.57 0.28 0.29 0.28
addNum-5 0.20 2.01 4.36 0.67 0.67 0.35
addNum-10 0.24 11.83 16.84 1.53 1.54 0.54
select-50 0.09 0.19 0.27 0.02 0.02 0.02
select-100 0.27 4.13 4.80 0.06 0.06 0.03
select-150 0.56 25.10 32.42 0.13 0.13 0.06

isort-primes4 9.56 0.02 0.02 1.15 1.14 1.11
psort-primes4 112.38 0.02 0.02 1.11 1.11 0.71

Table 2. Comparing Curry system with search strategies

support for CSP-like concurrency [24] and lightweight threads (goroutines). The
latter feature is used to provide, in addition to DFS and BFS, a fair search
strategy. For instance, consider the following contrived example:

idND :: a → a

idND n = loop ? n ? loop

where loop is non-terminating. Semantically, idND is the identity function but,
operationally, it is non-deterministically defined with looping alternatives. Both
DFS and BFS loop on the expression idND 0 instead of returning the value 0, since
there is no choice when evaluating loop. However, the fair search (FS) strategy
of Curry2Go returns this value since FS evaluates non-deterministic branches
concurrently as goroutines and collects the computed results in a channel [11].

To show that the efficiency of advanced search strategies is not really worse
than backtracking, we compared these Curry implementations and their search
strategies. Table 2 shows the run times (in seconds as the average of three runs) of
various examples11 and search strategies. The first three benchmarks are typical
purely functional programs. nrev-4096 is the quadratic naive reverse algorithm
applied to a list with 4096 elements, takPeano is a highly recursive function
on naturals [30] applied to arguments (24,16,8) in Peano representation, and
primesHO-1000 computes the 1000th prime number by constructing an infinite
list of all primes via the sieve of Eratosthenes (using higher-order functions).
For these examples, Curry2Go is much faster than PAKCS but less efficient
than KiCS2, which is not surprising since Haskell/GHC is a highly optimized
functional programming system.

The remaining non-deterministic benchmark programs show that KiCS2 and
Curry2Go are competitive with PAKCS (which exploits Prolog’s built-in support
for non-determinism). psort-13 is the naive permutation sort applied to a list of

11 The examples are available at https://github.com/curry-language/curry2go.

https://github.com/curry-language/curry2go


13 elements. addNum-n non-deterministically chooses a number (out of 2000) and
adds it n times, and select-n non-deterministically selects an element in a list of
length n and sums up the element and the list without the selected element. The
considerable slowdown in KiCS2 with increasing values for n is caused by the
duplication of choices in pull-tab steps [1] when non-deterministic expressions
are shared, as discussed in [22]. Curry2Go avoids this problem by adding a kind
of memoization for choices, as described in [11,22].

Apart from the fact that the fair search strategy of Curry2Go is the only
operationally complete strategy (e.g., it is able to compute a value of idND 0),
there are also other interesting differences between the search strategies. For
instance, KiCS2 shows some overhead of BFS compared to DFS (possibly due to
the additional structures used to implement breadth-first tree search), whereas
there is almost no overhead in Curry2Go (since the difference between BFS
and DFS is just a different scheduling of tasks). Moreover, the fair search (FS)
strategy is sometimes faster than BFS and DFS thanks to the use of goroutines
possibly scheduled on different processors. This is also visible in the last two
lines of Table 2 which show the time to sort

[primes!!303, primes!!302, primes!!301, primes!!300]

with the deterministic insertion sort (isort) and the non-deterministic permu-
tation sort (psort) algorithm, respectively, where primes defines the infinite list
of all prime numbers. Due to backtracking, identical computations might be
repeated if they occur in different non-deterministic branches. Thus, primes

is re-evaluated by PAKCS several times when the list is passed to the non-
deterministic operation psort. This is not the case in implementations which
represent choices in a graph structure so that the results of deterministic com-
putations are shared across non-deterministic evaluations [13].

5 Conclusions

We have shown the advantage of using functions instead of predicates by pre-
senting a systematic method to transform logic programs into functional logic
programs so that the transformed functional logic programs always computes the
same or more general answers than the original programs. This transformation
does not introduce any operational disadvantage: in the worst case, the number
of computation steps in the original and the transformed programs are identi-
cal, but in many other cases the number of computation steps is reduced and
infinite search spaces are transformed into finite ones. Furthermore, we showed
that applying complete search strategies on functional logic programs is compet-
itive to backtracking search so that one get rid of the usual problems caused by
backtracking. This closes the gap between theory and practice of logic program-
ming and could lead to a higher, really declarative programming style. With
these techniques, we can keep the ideas and advantages of logic programming
in future programming systems beyond the restriction to predicates and back-
tracking.
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A Source Code of Benchmarks

This appendix shows the Prolog source code of some predicates used in the
benchmarks in Sect. 3 and the Curry code generated by our tool implementing
the fail-sensitive functional transformation.

A.1 rev

The predicate rev is the well-known naive reverse with a quadratic complexity:

app([],Xs,Xs).

app([X|Xs],Ys,[X|Zs]) :- app(Xs,Ys,Zs).

rev([],[]).

rev([X|Xs],R) :- rev(Xs,Zs), app(Zs,[X],R).

Both predicates are translated into totally defined functions:

app [] xs = xs

app (x : xs) ys = x : app xs ys

rev [] = []

rev (x : xs) = app (rev xs) [x]

A.2 tak

The function tak is defined in Prolog on Peano numbers, where o represents zero
and s represents the successor of a natural number:

tak(X,Y,Z,A) :- leq(X,Y,XLEQY), takc(XLEQY,X,Y,Z,A).

takc(true,X,Y,Z,Z).

takc(false,X,Y,Z,A) :-

dec(X,X1),

tak(X1,Y,Z,A1),

dec(Y,Y1),

tak(Y1,Z,X,A2),

dec(Z,Z1),

tak(Z1,X,Y,A3),

tak(A1,A2,A3,A).

dec(s(X),X).

leq(o,_,true).

leq(s(_),o,false).

leq(s(X),s(Y),R) :- leq(X,Y,R).

Due to the definition of dec, the generated function takc contains occurrences of
“$!” in its right-hand side:



tak x y z = takc (leq x y) x y z

takc True x y z = z

takc False x y z =

((tak $! (tak $! (dec x)) y z) $! (tak $! (dec y)) z x) $!
(tak $! (dec z)) x y

dec (S x) = x

leq O _ = True

leq (S _) O = False

leq (S x) (S y) = leq x y

A.3 ackermann

The Ackermann function is also defined as a Prolog predicate on Peano numbers,
as presented in [36]:

ackermann(o,N,s(N)).

ackermann(s(M),o,Val) :- ackermann(M,s(o),Val).

ackermann(s(M),s(N),Val) :-

ackermann(s(M),N,Val1), ackermann(M,Val1,Val).

It is translated into the Curry function

ackermann O n = S n

ackermann (S m) O = ackermann m (S O)

ackermann (S m) (S n) = ackermann m (ackermann (S m) n)

A.4 numleaves

The predicate numleaves relates a binary tree with the number of its leaves in
Peano representation:

plus(o,Y,Y).

plus(s(X),Y,s(Z)) :- plus(X,Y,Z).

numleaves(leaf(_),s(o)).

numleaves(node(M1,M2),s(N)) :-

numleaves(M1,N1), numleaves(M2,N2), plus(N1,N2,N).

This is translated into the Curry functions

plus O y = y

plus (S x) y = S (plus x y)

numleaves (Leaf _) = S O

numleaves (Node m1 m2) = S (plus (numleaves m1) (numleaves m2))



A.5 permsort

The permutation sort example computes permutations by non-deterministically
inserting an element into a list.

% Non-deterministic list insertion:

insert(X,[],[X]).

insert(X,[Y|Ys],[X,Y|Ys]).

insert(X,[Y|Ys],[Y|Zs]) :- insert(X,Ys,Zs).

% Permutations:

perm([],[]).

perm([X|Xs],Zs) :- perm(Xs,Ys), insert(X,Ys,Zs).

% less-or-equal relation

leq(o,_).

leq(s(X),s(Y)) :- leq(X,Y).

% Is the argument list sorted?

sorted([]).

sorted([_]).

sorted([X,Y|Ys]) :- leq(X,Y), sorted([Y|Ys]).

% Permutation sort: search for some sorted permutation

psort(Xs,Ys) :- perm(Xs,Ys), sorted(Ys).

The generated operations insert and perm are totally defined, whereas leq,
sorted, and psort might fail. Due to the strict left-to-right semantics of the
predefined conjunction operator “&&”, insertions of the strict application opera-
tor “$!” in the third rule of sorted are not necessary.

insert x [] = [x]

insert x (y : ys) = x : (y : ys)

insert x (y : ys) = y : insert x ys

perm [] = []

perm (x : xs) = insert x (perm xs)

leq O _ = True

leq (S x) (S y) | leq x y = True

sorted [] = True

sorted [_] = True

sorted (x : y : ys) | leq x y && sorted (y : ys) = True

psort xs | sorted ys = ys

where ys = perm xs
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