
BoostRLR: The beauty of Prolog for statistical

relational learning

Felix Weitkämper[0000−0002−3895−8279]

Institut für Informatik, Oettingenstr. 67, 80538 München felix.weitkaemper@lmu.de

Abstract. This paper presents an implementation of functional gradi-
ent boosting for relational logistic regression in less than 300 lines of Pro-
log code. This serves as a proof-of-concept for the perfect fit of Prolog
as an implementation language for statistical relational learning algo-
rithms, enabling rapid development and transparent code. Furthermore,
the efficiency and additional features of modern Prolog engines such as
tabling, multithreading and well-documented foreign-function interfaces
contribute to the performance of Prolog implementations of such algo-
rithms. As a vibrant, novel application area, statistical relational learn-
ing can give a new impetus to Prolog system development and motivate
further optimisations and development.

Keywords: Functional gradient boosting · Relational logistic regression
· Prolog

1 Introduction

Statistical relational artificial intelligence comprises approaches that combine
probabilistic learning and reasoning with variants of first-order predicate logic.
Compared to ordinary Bayesian networks or Markov networks, statistical rela-
tional languages have some key advantages. The generic relational representation
allows features that refer directly to the relations between objects, and since the
name and number of domain objects is not predetermined, models can be trans-
ferred between differently sized domains. Additionally, by fixing the signature,
known symmetries can be enforced when learning the structure or the param-
eters of a model, which smooths out random fluctuations that may occur in
the data. Finally, the compactness and genericity of learned models significantly
enhances readability of models for humans. This is a key factor for achieving
human-interpretable machine learning models.

The problem of statistical relational artificial intelligence can be approached
from both directions; either, statistical models are lifted to make use of a re-
lational representation, or logic programs are extended by probabilities. The
latter approach gives rise to probabilistic logic programming (PLP). Since PLP
has emerged from the logic programming and inductive logic programming com-
munities, Prolog has played an important role as an implementation language for
PLP from the very early days of the field [17]. In this contribution, we want to

2 F. Weitkämper

demonstrate the suitability of Prolog for target formalisms of the other kind, re-
lational statistical models. Our case study concerns functional gradient boosting
for relational logistic regression, which we briefly introduce now. A full discus-
sion of the intricacies of relational logistic regression can be found in the original
paper [8].

1.1 Relational logistic regression

%

Relational logistic regression We now introduce relational logistic regression in
the form used for the functional gradient boosting algorithm of Ramanan et al.
[14]. Relational logistic regression is a direct generalisation of logistic regression, a
widespread method for probabilistic modelling with Boolean response variables.

In our setting, there is a single target predicate Q, whose interpretation de-
pends probabilistically on the interpretation of a number of extensional predi-

cates. Let (xi)i∈1,...,k be a tuple of variables whose arity corresponds to the arity
of the target predicate. To model such probabilistic dependencies, relational lo-
gistic regression employs weighted formulas, which are triples (ϕ,wT , wF), where
ϕ is a formula and wT and wF are real numbers. In relational logistic regression,
features are defined by conjunctive formulas (ϕi, wT,i, wF,i)i of extensional pred-
icates with weights wi. Let ι(xi) = ai define a grounding of Q(x1, . . . , xk). Then
the probability of Q(a1, . . . , ak) to hold given an interpretation of the feature
predicates is defined as follows:

P(Q (a)) := σ

(

w0 +
∑

i

(wT,iti + wF,ifi)

)

where ti and fi are the numbers of true and false groundings (respectively)
extending ι of the formula ϕi and σ(z) = 1/(1+exp(−z)) is the sigmoid function.

Example 1. Consider a situation where people who have more friends are more
likely to be considered social, and where we would like to predict whether an
individual is social depending on the number of friends they have. In that case,
there could be a single atom Friends(x, y) as a feature, with an associated positive
weight wT and negative weight wF , as well as an arbitrary intercept weight w0.
The probability of an individual being social is then given by σ(w+wT t+wF f),
where t is the number of friends that individual has and f is the number of
potential contacts (domain elements) that the individual is not friends with.

1.2 Functional gradient boosting for relational logistic regression

We approach scalable structure learning for relational logistic regression models
from functional gradient boosting, which combines families of weak learners that
are fast and easy to learn to stronger aggregate learners [6]. In our setting, the
training data is given by a single interpretation of the extensional predicates and

BoostRLR: The beauty of Prolog for statistical relational learning 3

a finite set of examples, that is, groundings of the atomic formula Q(x1, . . . , xk),
where Q is the target predicate. Every example is annotated with a truth value
(true or false). The goal of learning a relational logistic regression model from
data is to find a set of weighted conjunctive formulas that maximises the likeli-
hood of the individual examples. As it is convenient instead to speak of a loss

function, we consider the gradient as the difference between the actual truth
value of an example (where true is taken to be 1 and false is taken to be 0)
and the probability value predicted by the classifier. Thus, if the probability
predicted is 0.8 and the example is in fact true, then the gradient would be -0.2,
while if the example is in fact false the gradient would be 0.8.

To be able to adjust the intercept probability more easily as new formulas
are added, Ramanan et al. [14] suggest learning not just formulas with weights
for true and false instances, but a third weight for each formula which is simply
added to the intercept.

We proceed to give a high-level overview of the algorithm. At the highest
level, the algorithm consists of the following steps:
Until a prescribed number M of clauses is reached:

1. Find the current gradient of each example;
2. find a weighted conjunctive formula that, when added, reduces the (regu-

larised) average square gradient, which will just be called the score in the
following;

3. add that clause to the regression and repeat.

To find a good weighted clause, we start with a clause with an empty body
(which corresponds to a formula that is always true), and weights (0, 0, 0). We
then proceed as follows until we either no longer improve the score or we reach
a prescribed number L of conjuncts:

1. Enumerate possible atoms to conjoin to the formula; for each, find the opti-
mal weights of the formula augmented by the atom, and calculate the score
of the resulting formula;

2. choose the best-scoring literal and add it to the clause;
3. update the weight to that just calculated.

Enumeration is controlled by the user with the classical inductive logic program-
ming technique of mode declarations [11], which will be explained in more detail
when discussing our concrete Prolog implementation below.

This leaves open how the scores and optimal weights are computed. Ramanan
et al. [14] derive a closed-form matrix representation of the problem as follows:
For each triple-weighted formula ϕ, let Cϕ be the matrix whose i-th row is
[1, tϕ(j), fϕ(j)], where tϕ(j) and fϕ(j) are the numbers of true and false ground-
ings respectively that correspond to the j-th example. Let wϕ be a weight vector
[w0, wT , wF]. Let ∆j be the j-th example gradient of the existing clauses. Let
λ > 0 be a regularisation parameter.

Then Ramanan et al. [14] show that the regularised square error of the model
augmented with the triple-weighted formula (ϕ,w) can be written compactly as

‖Cw −∆‖2 + λ ‖w‖2 .

4 F. Weitkämper

The optimal weights are in fact solutions to the linear system

(

CTC + λI
)

w = CT∆

or, equivalently, computed by

w =
(

CTC + λI
)−1

CT∆. (1)

2 Prolog as an implementation language

Several factors make Prolog an ideal implementation language for such statis-
tical relational learning approaches. Firstly, there is a direct representation of
quantifier-free conjunctive formulas as conjunctive Prolog goals, and of an in-
terpretation of any number of relation symbols on a finite domain as a Prolog
knowledge base. This reduces calculating the number of true groundings of a
conjunctive formula with respect to an interpretation to simply counting the
number of solutions of a goal with respect to a knowledge base. Similarly, inte-
grating background knowledge is seamless in Prolog, since a knowledge base can
itself be seen as simply another Prolog program to be consulted and evaluated.
Thus, Prolog clauses provide a uniform representation for all variable aspects of
the algorithm.

More generally, Prolog is a very compact language per se, and allows for
the transparent, brief and flexible expression of a variety of search algorithms.
Above and beyond the ISO standard, modern Prolog implementations provide
valuable extensions that contribute significantly to the implementation. The first
and most important is tabling, the comprehensive and disciplined integration of
memoisation with the Warren Abstract Machine model of computation imple-
mented in the SLG-WAM abstract machine [3]. By keeping tables of already
computed answers in memory, tabling equips Prolog with the functionalities of a
deductive database engine [16]. Repeatedly computing the numbers of solutions
of goals with respect to a knowledge base is a classic deductive database task
that profits from keeping previous results in memory. Tabling was pioneered by
XSB, which still provides a particularly mature and efficient implementation
[19]. However, tabled evaluation has also been integrated into other wide-spread
systems such as SWI-Prolog [24] and YAP [4], which allows its benefits to be
combined with other features that can make those systems preferable for a given
task.

As part of the main loop of our algorithm, the program scores several candi-
date extensions of a clause independently and chooses the best one. This imme-
diately suggests parallelisation. Arguably the best-maintained multi-threading
engine, which is compatible with all the other language features offered there,
is implemented in SWI-Prolog [23]. In previous versions, XSB and YAP had
extended their engines with multithreading support, and significant work was
put into the efficient and semantically sound combination of tabling and multi-
threading in both systems [10, 1]. However, by 2023, multi-threading has been

BoostRLR: The beauty of Prolog for statistical relational learning 5

deprecated in both systems (Swift, Theresa and Rocha, Ricardo, personal com-
munication).

Thus, we seemed to face the choice of either prioritising efficient and mature
tabling or multi-threading capability when choosing a system for our implemen-
tation. Eventually, we made the decision to make our code executable on either
XSB or SWI-Prolog using a portable system of dialect flags, allowing the user
to choose his system based on personal preference and familiarity or on the
characteristics of his dataset.

Further evidence of the suitability of Prolog for this task is given by the
existing Java implementation itself [13], which expends many of its more than
80,000 lines of code on implementations of core reasoning functionality (in this
case adapted from the Wisconsin Inductive Logic Learner [12]) that is natively
available in Prolog.

Existing use of Prolog for statistical relational artificial intelligence has cen-
tered on PLP. This includes the implementation of structure learning algorithms
such as SLIPCOVER [2] and LIFTCOVER [5], which are probably the closest
analogues to our present work. However, they differ not just in their target for-
malism, but employ a completely different learning methodology unrelated to
functional gradient boosting. In addition to implementing learning algorithms
themselves, applications to PLP have motivated several auxiliary utilities, such
as the recent Prolog encoding of automatic differentiation [18] and a SWI-Prolog
pack of Prolog-native matrix operations [15].

3 Implementation

Our Prolog implementation has only 300 lines including empty lines and com-
ments, and we will present what we consider the most insightful components of
it here, highlighting the design choices and Prolog features used. The software
exists in two different forms: a SWI-Prolog version with no dependencies on
foreign functions, ustilising the aforementioned Matrix pack, and a more highly
performant version which makes use of C implementations of the linear algebra
and is compatible with both XSB and multithreaded SWI-Prolog through dialect
flags.

3.1 Input files

The input to the algorithm is provided in the form of four files, namely bias.pl,
which contains the mode declarations, settings.pl, which specifies the number
of clauses to be learnt, the maximum length of any clause and a regularisation
parameter λ, kb.pl, which contains the training domain and the background
knowledge and lastly examples.pl, which contains the actual positive and nega-
tive examples used for learning.

For a simple running example of family relations, the bias file could look as
follows:

6 F. Weitkämper

:- module(bias,[modeb/2]).

modeb(father(_,_),childof(a,a)).

modeb(father(_,_),male(a)).

modeb(father(_,_),siblingof(a,a)).

The module declaration never has to be changed by the user, and the mode dec-
larations say that the predicates childof/2, male/1 and sibling/2 can occur
in clauses predicting father/2. The ’a’ in the argument position stands for ’any’
and means that any variable can be used in that argument position, whether it
already occurred earlier in the clause (an input variable) or not (an output vari-
able). If the arguments should be restricted to either input or output variables,
‘a’ could be replaced with ‘i’ or ‘o’ respectively.

While the algorithm as developed by Ramanan et al. [14] only covers single-
target learning, making the explicit head declaration redundant, we include it in
the mode declarations in order to facilitate future generalisation to multi-target
learning.

The settings file sets the parameters as simple unary clauses, and only the
three arguments have to be adapted by the user to set the parameters.

:- module(settings,[lambda/1,clause_length/1, clause_num/1]).

lambda(100).

clause_length(2).

clause_num(1000).

The knowledge base could be any Prolog program defining the background
knowledge, including a tabled predicate defining the training domain. In our
case, an excerpt of it could be such:

:- table domain/1.

male(fredweasley).

male(jamespotter).

male(harrypotter).

siblingof(fredweasley,ginnyweasley).

childof(jamespotter,harrypotter).

childof(lilypotter,harrypotter).

domain(X) :-

male(X);

siblingof(X,_);

siblingof(_,X);

childof(X,_);

childof(_,X).

Finally, the examples file is another arbitrary Prolog program defining the
positive and negative training examples, in this case containing among others
the following facts:

BoostRLR: The beauty of Prolog for statistical relational learning 7

positive(father(harrypotter,jamespotter)).

negative(father(harrypotter,lilypotter)).

negative(father(harrypotter,fredweasley)).

3.2 A guided tour of program highlights

b_rlr(+,-) is the main entry point to the program. It takes the target predicate
with (usually anonymous) variables as its first argument and returns the list of
weighted clauses as its second argument. So, a typical call would be

?- b_rlr(father(_,_),WeightedClauses).

A key advantage of using Prolog is that the target and the background knowl-
edge can themselves be immediately processed by the engine. However, a side
effect of this feature can be the propagation of unwanted variable bindings
through the program. To counteract this, we immediately pass the query through
numbervars/1, which “freezes” head variables to designated terms which can be
“thawed” again later when needed. We implement the main loop of the program
using the classic accumulator technique to facilitate tail recursion:

b_rlr(Head,WeightedClauses) :-

numbervars(Head),

b_rlr(Head,0,[],WeightedClauses).

b_rlr(_,Acc,WeightedClauses,WeightedClauses) :-

clause_num(Acc).

b_rlr(Head,Acc,OldWeightedClauses,WeightedClauses) :-

\+clause_num(Acc),

compute_gradients(Head,OldWeightedClauses,Gradients),

fit_regression(Head,Gradients,Clause,Weights),

Acc1 is Acc +1,

NewWeightedClauses = [(Weights::Clause)|OldWeightedClauses],

b_rlr(Head,Acc1,NewWeightedClauses,WeightedClauses).

The key algorithmic components are the predicates compute_gradients/3, which
evaluates clauses against the training examples, and fit_regression/4, which
builds the optimal next clause to add. We discuss the implementation of each in
turn.

compute_gradients(+,+,-) takes as arguments the query used for testing
and the weighted clauses returned e.g. by b_rlr/2, and returns the list of gradi-
ents, i. e. the list of deviations between the predicted probabilities and the real
truth value of the query. It is implemented using findall/3 over an auxiliary
predicate, which returns the gradients of all possible examples upon backtracking
over compute_gradients. compute_gradient(+,+,-) finally computes a single
example gradient by performing inference over the weighted clauses.

8 F. Weitkämper

compute_gradient(Head,WeightedClauses,Gradient) :-

positive(Head),

inference(Head,WeightedClauses,Prob),

Gradient is 1 - Prob.

compute_gradient(Head,WeightedClauses,Gradient) :-

negative(Head),

inference(Head,WeightedClauses,Prob),

Gradient is -Prob.

inference(+,+,-) computes the probability of a ground instance of the target
being true as predicted by the weighted clauses. It does so by calculating the
numbers of true and false groundings and applying the sigmoid function to con-
vert weights to probabilities. All the mathematics required for this computation
is implemented by fast core Prolog arithmetic.

inference(Head,WeightedClauses,Prob) :-

ground(Head),

aggregate_all(sum(S),

(member(([W0,W1,W2]::(Head <= Body)),WeightedClauses),

calculate_groundings(Body,T,F),

S is W0 + W1*T + W2*F),CompoundWeight),

sigmoid(CompoundWeight,Prob).

sigmoid(W,S) :-

S is (exp(W) / (exp(W) + 1)).

calculate_groundings(+,-,-) counts the number of true and false groundings
of a clause body. This is done by counting the solutions to the goal, and then
deducting it from the overall number of possible solutions. Since forming a list
and then considering its length is a very inefficient way to count, we use a
dedicated counting predicate count/2. In SWI-Prolog, this can rely on an efficient
specialised implementation of aggregate_all(count,_,_), while we provide a
dedicated low-level XSB implementation in a count module that we include with
our program, courtesy of David S. Warren (personal communication).

calculate_groundings(Body,T,F) :-

term_variables(Body,VarsList),

count(Body, T),

length(VarsList,Exponent),

count_domain(All),

Alltups is All ** Exponent,

F is Alltups - T.

count_domain(All) :-

count(domain(_),All).

We now turn to fit_regression(+,-,-,-), which implements the inner loop. It
relies on extend_body(+,+,+,+,+,-,-,-), which finds the best-scoring exten-
sion of a body by a mode-conforming literal. extend_body/8 employs a find_all

BoostRLR: The beauty of Prolog for statistical relational learning 9

over the scored literals, chooses the best-scoring one and then iterates this until
either no further literal improves the score or the maximum number of clauses
has been reached.

fit_regression(Head,Gradients,Clause,Weights) :-

extend_body(Head,true,1.0E10,[0,0,0],0,Gradients,Body,Weights),

Clause = (Head <= Body).

extend_body(Head,Body,Score0,OldWeights,Acc,Grads,NewBody,ClWghts) :-

findall((Body,Literal)-Score-Weights,

(possible_literal(Head,Body,Literal),

unnumbervars((Head,Body,Literal),

(ReHead,ReBody,ReLiteral)),

score(ReHead,ReBody,Grads,ReLiteral,Weights,Score)),Ls),

Extensions = [Body-Score0-OldWeights|Ls],

argminlist(Extensions,Body2,Score2,Weights2),

Acc1 is Acc + 1,

clause_length(Max),

((Body2 = Body

; Acc1 = Max

)

-> Body2 = NewBody,

ClWghts = Weights2

; extend_body(Head,Body2,Score2,Weights2,

Acc1,Grads,NewBody,ClWghts)).

As this predicate scores a range of possible literals independently of each other,
it is predestined for parallelisation. Therefore, we allow the user to toggle par-
allel execution under SWI-Prolog using a command-line flag, which replaces the
above definition of extend_body with a restructured one that makes use of SWI-
Prolog’s built-in concurrent_maplist predicate.

possible_literal(+,+,-) generates mode-conforming extensions by one
literal on backtracking, where the actual parsing of the mode declarations is
taken on by instantiation/3.

possible_literal(Head,Body,Literal) :-

unnumbervars((Head,Body),(ReHead,ReBody)),

modeb(Head,Schema),

instantiation(Schema,(ReHead,ReBody),Literal).

score(+,+,+,+,-,-) computes the optimal weights and the corresponding score
of a body and literal. It is implemented using findalls over score_aux(+,+,+,-,-),
which returns the numbers of true and false groundings of all possible examples
upon backtracking. It then passes the results of the findalls to the dedicated
C-implemented function opt_weight_score (where flags deal with the slightly
different foreign function interfaces of XSB and SWI-Prolog), which implements
Equation 1.

10 F. Weitkämper

score_aux(Head,Body,Literal,T,F) :-

copy_term((Head,Body,Literal),(Head2,Body2,Literal2)),

example(Head2),

calculate_groundings((Body2,Literal2),T,F).

For ease of maintenance, the C code implementing Equation 1 itself is collected in
a single C file and uses a specialised Cholesky decomposition for better numerical
stability. Additional custom-made files then pass the computations to the foreign
function interfaces of XSB and SWI-Prolog respectively.

In the stand-alone Prolog implementation used for teaching, the predicate
opt_weight_score is implemented in a Prolog file making use of Riguzzi’s ma-
trix library [15].

4 Experimental evaluation

The main considerations for our implementation were adaptability, extendibil-
ity and compactness of the code. However, since some planned extensions such
as multi-target learning require a significant number of iterations of structure
learning to be executed, performance was still an important consideration.

We here present some initial experiments that merely show the benefit of
several of the Prolog features we exploit. While it would of course also be in-
teresting to benchmark our implementation against the Java reference [13], we
have so far been unable to execute that code successfully.

All the experiments we present in Table 1 here use the family database we
mentioned above, which has just 40 facts, 5 positive examples and 21 negative
examples. While benchmarking on bigger training problems is work for the im-
mediate future, in the meantime we can scale the difficulty of the problem by
using different settings. We compare 5 different configurations: The vanilla pure
Prolog version we use for teaching (“vanilla”), with some manual memoising but
without tabling, and a pure Prolog version with tabling (“tabled”) (both exe-
cuted under SWI-Prolog); the version we explained above, with linear algebra
implemented in C, on XSB (“XSB”) and on SWI-Prolog (there with (“SWI-mt”)
and without multi-threading (“SWI”)). All experiments were conducted on a lap-
top running Ubuntu 20.04, with 15,3 GiB RAM and an Intel i7 1,9 GHz * 8 core
processor. We use SWI-Prolog 9.3.7 with optimisation enabled and XSB 5.0.
As execution times differ quite a bit between runs, they should only be taken
as a rough estimate. This shows that at least for this small dataset, the supe-
rior tabling performance in XSB outweighs the downsides of multithreading, but
that as long as the clause length is sufficient for enough parallel scoring to be
required, multithreading does have a positive impact. We would expect this to
grow with the complexity of the individual scoring task, making multithreading
more competitive on larger knowledge bases.

BoostRLR: The beauty of Prolog for statistical relational learning 11

Table 1. Execution times of the experiments in seconds, with a 4 minute time-out.

settings vanilla tabled SWI SWI-mt XSB

6, 20 6.6 2.5 1.1 0.77 0.43
6, 200 >240 22.9 7.1 6.6 3.0
2, 1000 122 39.4 24.4 28.1 9.6

5 Discussion and conclusion

Our implementation has captured the algorithm exactly as described [14], while
requiring less than 300 lines in comparison to the only alternative Java imple-
mentation’s more than 80,000 lines of code [13] (a reduction in code length by a
factor of more than 250). While some of the linear algebra has been outsourced
to C code, even this is very compact, with less than another 300 lines of code in-
cluding separate parameter-passing from both SWI-Prolog and XSB. By utilising
tabling, multithreading and the foreign-function interface, our implementation
has nonetheless taken significant steps towards computational efficiency.

However, our main motivation in reimplementing this algorithm in Prolog was
to have a research prototype with which to implement variations and extensions
of the original algorithm. Among the extensions that are currently in progress
is multi-target learning in the original setting of Kazemi et al. [8], who use
relational logistic regression as an aggregation function within lifted Bayesian
networks.

There is a vast variety of search techniques in use for learning the structure
of Bayesian networks [9], many of which are excellently suited to implementation
in Prolog. Our Prolog rendering of learning and inference for relational logistic
regression can very easily be augmented by adding a structure learning algorithm
on top, which calls the entry point of the program inside its loop. Integration
into a single Prolog program also allows tabling to act across different iterations
of the structure search, maximising efficiency.

Recently, Weitkämper [22, 21] has demonstrated the asymptotic consistency
of relational logistic regression when training and test domains are of different
size, as long as the weight parameters are scaled commensurately with the size
of the domain. Such scaling can easily be inserted into our implementation by
querying domain sizes before performing inference. It also allows for learning
from several training domains of different sizes, applying a different scaling factor
to each training domain depending on its size. The Prolog_DB package shipped
with XSB offers a very elegant declarative approach to this problem, whose
computational efficiency and compatibility with the SWI-Prolog ecosystem we
have yet to evaluate.

Ultimately, despite its clear advantages, using Prolog directly will always
limit the general appeal of an implementation. Hence, the recently presented
Prolog-Python bridge Janus [20], implemented in a widely compatible way by
both XSB and SWI-Prolog, can prove a key contribution towards the feasibility
of using Prolog as an implementation language for machine learning algorithms.

12 F. Weitkämper

A blueprint for this could be srlearn [7], which serves a similar function for
those functional gradient boosting algorithms implemented in Java. A possible
challenge to overcome would be the integration of the C code, which could be
simplified by reimplementing it in Python using numpy. In the other direction,
Janus also facilitates access to Python’s enormous data analysis and visualisation
ecosystem directly from Prolog.

It is painful to see that so much effort that has gone into seamlessly and
efficiently integrating parallelisation and tabling within YAP and XSB has been
made inaccessible by the deprecation of both Prolog’s multithreading capabili-
ties. Part of the reason for this seems to be a lack of clear applications to justify
the maintenance burden of a separate mutlithreaded engine. From this perspec-
tive, we present (relational) machine learning as a vibrant field that can benefit
from precisely this combination of features.

Therefore, we believe that adopting transparent implementations of cutting-
edge relational learning algorithms can open up new fields of application to
modern Prolog engines, giving their developers new stimuli for their optimisa-
tion. Indeed, in addition to the new counting predicate the work presented here
has already motivated improvements to the core XSB engine that significantly
sped up the call of core built-ins. Most importantly though, Prolog can help
overcome the implementation bottleneck that hampers progress in statistical re-
lational learning and serves as a huge barrier to entry for researchers outside
large, well-established research groups with many years of tooling and imple-
mentation craft passed down through generations of students.

References

1. Areias, M., Rocha, R.: Table space designs for implicit and explicit concur-
rent tabled evaluation. Theory Pract. Log. Program. 18(5-6), 950–992 (2018).
https://doi.org/10.1017/S147106841800039X

2. Bellodi, E., Riguzzi, F.: Structure learning of probabilistic logic programs by
searching the clause space. Theory Pract. Log. Program. 15(2), 169–212 (2015).
https://doi.org/10.1017/S1471068413000689

3. Chen, W., Warren, D.S.: Tabled evaluation with delaying for general logic pro-
grams. J. ACM 43(1), 20–74 (1996). https://doi.org/10.1145/227595.227597

4. Costa, V.S., Rocha, R., Damas, L.: The YAP prolog system. Theory Pract. Log.
Program. 12(1-2), 5–34 (2012). https://doi.org/10.1017/S1471068411000512

5. Fadja, A.N., Riguzzi, F.: Lifted discriminative learning of probabilistic logic pro-
grams. Mach. Learn. 108(7), 1111–1135 (2019). https://doi.org/10.1007/S10994-
018-5750-0

6. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. An-
nals of statistics 29, 1189–1232 (2001)

7. Hayes, A.L.: srlearn: A python library for gradient-boosted statistical relational
models. CoRR abs/1912.08198 (2019), http://arxiv.org/abs/1912.08198, pre-
sented at StarAI 2020

8. Kazemi, S.M., Buchman, D., Kersting, K., Natarajan, S., Poole, D.: Relational lo-
gistic regression. In: Baral, C., Giacomo, G.D., Eiter, T. (eds.) Principles of Knowl-
edge Representation and Reasoning: Proceedings of the Fourteenth International
Conference, KR 2014, Vienna, Austria, July 20-24, 2014. AAAI Press (2014)

BoostRLR: The beauty of Prolog for statistical relational learning 13

9. Kitson, N.K., Constantinou, A.C., Guo, Z., Liu, Y., Chobtham, K.: A survey of
bayesian network structure learning. Artif. Intell. Rev. 56(8), 8721–8814 (2023).
https://doi.org/10.1007/S10462-022-10351-W

10. Marques, R., Swift, T., Cunha, J.C.: A simple and efficient implementation of con-
current local tabling. In: Carro, M., Peña, R. (eds.) Practical Aspects of Declarative
Languages, 12th International Symposium, PADL 2010, Madrid, Spain, January
18-19, 2010. Proceedings. Lecture Notes in Computer Science, vol. 5937, pp. 264–
278. Springer (2010). https://doi.org/10.1007/978-3-642-11503-5_22

11. Muggleton, S.H.: Inverse entailment and progol. New Gener. Comput. 13(3&4),
245–286 (1995). https://doi.org/10.1007/BF03037227

12. Natarajan, S., Kunapuli, G., O’Reilly, C., Maclin, R., Walker, T., Page, D.,
Shavlik, J.: Ilp for bootstrapped learning: A layered approach to automating
the ilp setup problem (2009), https://dtai-static.cs.kuleuven.be/events/ilp-mlg-
srl/USBStick/papers/ILP09-8.pdf, presented as a poster at the 19th Conference of
Inductive Logic Programming.

13. Ramanan, N., Khot, T., Natarajan, S.: Rlr_boost (2018),
https://github.com/nandhiniramanan5/

14. Ramanan, N., Kunapuli, G., Khot, T., Fatemi, B., Kazemi, S.M., Poole, D.,
Kersting, K., Natarajan, S.: Structure learning for relational logistic regres-
sion: an ensemble approach. Data Min. Knowl. Discov. 35(5), 2089–2111 (2021).
https://doi.org/10.1007/S10618-021-00770-8

15. Riguzzi, F.: Matrix (2023), https://github.com/friguzzi/matrix

16. Sagonas, K., Swift, T., Warren, D.S.: XSB as an efficient deductive database
engine. In: Snodgrass, R.T., Winslett, M. (eds.) Proceedings of the 1994
ACM SIGMOD International Conference on Management of Data, Minneapo-
lis, Minnesota, USA, May 24-27, 1994. pp. 442–453. ACM Press (1994).
https://doi.org/10.1145/191839.191927

17. Sato, T.: A statistical learning method for logic programs with distribution se-
mantics. In: Sterling, L. (ed.) Logic Programming, Proceedings of the Twelfth
International Conference on Logic Programming, Tokyo, Japan, June 13-16, 1995.
pp. 715–729. MIT Press (1995)

18. Schrijvers, T., van den Berg, B., Riguzzi, F.: Automatic differentia-
tion in prolog. Theory Pract. Log. Program. 23(4), 900–917 (2023).
https://doi.org/10.1017/S1471068423000145

19. Swift, T., Warren, D.S.: XSB: extending prolog with tabled logic pro-
gramming. Theory Pract. Log. Program. 12(1-2), 157–187 (2012).
https://doi.org/10.1017/S1471068411000500

20. Swift, T., Andersen, C.: The janus system: Multi-paradigm programming in prolog
and python. In: Pontelli, E., Costantini, S., Dodaro, C., Gaggl, S.A., Calegari, R.,
d’Avila Garcez, A.S., Fabiano, F., Mileo, A., Russo, A., Toni, F. (eds.) Proceedings
39th International Conference on Logic Programming, ICLP 2023, Imperial College
London, UK, 9th July 2023 - 15th July 2023. EPTCS, vol. 385, pp. 241–255 (2023).
https://doi.org/10.4204/EPTCS.385.24

21. Weitkämper, F.: Probabilities of the third type: Statistical relational learn-
ing and reasoning with relative frequencies. CoRR abs/2202.10367 (2024),
https://arxiv.org/abs/2103.15140

22. Weitkämper, F.: Scaling the weight parameters in Markov logic networks
and relational logistic regression models. CoRR abs/2103.15140 (2024),
https://arxiv.org/abs/2103.15140

14 F. Weitkämper

23. Wielemaker, J.: Native preemptive threads in swi-prolog. In: Palamidessi, C. (ed.)
Logic Programming. pp. 331–345. Springer Berlin Heidelberg, Berlin, Heidelberg
(2003)

24. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: Swi-prolog. Theory Pract.
Log. Program. 12(1-2), 67–96 (2012). https://doi.org/10.1017/S1471068411000494

