
pymicrolog – Interactive Logic Programming in
Python

Mario Wenzel1

Martin-Luther-Universität Halle-Wittenberg, Institut für Informatik,
Von-Seckendorff-Platz 1, D-06099 Halle (Saale), Germany

mario.wenzel@informatik.uni-halle.de

Abstract. pymicrolog is an embedded DSL for the popular program-
ming language Python implementing Microlog. Microlog is a logic pro-
gramming language based on Datalog with an explicit call-convention
that allows for interaction with imperative library code.
This paper describes the syntactic and semantic differences between Mi-
crolog and pymicrolog. A few example applications are shown to un-
derscore the viability of Microlog as a general purpose programming
language for interactive applications.

Keywords: Logic Programming · Datalog · Python.

1 Introduction

Games programming and robotics are two of the main draws in computer sci-
ence outreach. Interactive applications have been used to make computer science
exciting and graspable for a very long time [9]. While mathematical operations
on a blackboard are usually free of side-effects, with games the interactive parts
of a computation are the important parts of a program. Similarly, the current
game state (e. g., game board, map) are mostly or completely visible and this
makes games inherently stateful.

The programming languages and paradigms that are used in school-based and
extracurricular courses are limited. Programming courses and computer science
outreach programs based on programming games and robots mostly devoid of
other programming paradigm than imperative programming.

But the declarative paradigm is arguably more useful for the general pop-
ulation than the imperative one. Spreadsheet software, for example, is at the
core of many business operations and the importance and pervasiveness of Excel
is obvious. Therefore it is not a surprise that an introduction to spreadsheet
software is part of most school curricula or introductory adult computer literacy
courses. The computational model of Excel and similar spreadsheet software is
not an imperative one.

Query languages, as another example, be that SQL, SPARQL, Datalog, or
others, are useful tools for information retrieval. In schools, library access is
sometimes taught using a domain specific query language employed by the local

2 M. Wenzel

or institutional library. More broadly, “how to google” is generally seen as an
important skill. SQL is still seen as a core language in a business intelligence
toolkit [5]. Again, the computational model of query languages is usually not an
imperative one. We value query languages because quite the opposite is true: we
tell the computer system what to retrieve, and not how to retrieve it.

Besides a recent experiment in Argentina [3], where primary school children
were tasked to find a thief using a Prolog based detective game, current experi-
ments in early computer science education and computer science outreach seem
to cover logic and its application only sparsely. We do find robotics courses and
game programming that use graphical imperative programming languages (like
“Scratch” [7]) to encode behaviour which should foster “computational think-
ing” [6]. In terms of artificial intelligence (AI), the current trend seems to go
away from explainable AI, and towards statistical methods. The question is,
whether these skills will be, now and in the future, as broadly applicable as
methods with stronger links to classical logic.

We would like to employ the same engaging topics, like robotics and games
programming, and still keep the benefits of declarative logic programming:

– It is easier to teach and learn, as it keeps more closely to pure mathematics
and the known semantics of the blackboard.

– It is more broadly applicable as interfaces to many interactive systems are not
imperative in nature. And even if they are, the statefulness can be modeled
explicitly.

– Programs can more easily be shown to be correct, as the program semantics
is easier encoded in mathematical logic.

In this paper we present pymicrolog, an embedded Python DSL encoding
most of the Microlog semantics. Microlog is a logic programming language based
on Datalog with special relations that map to function calls of an imperative
system. Facts deduced in these special relations lead to corresponding function
calls. Resulting data from calls to external functions is fed back into the system
as the initial input for the next state deduction. This leads to a coinductive
model that allows for non-termination. And indeed we do not even allow for
termination. We can interpret a Microlog program as a stream of function calls
with their return values fed back into the system.

While Microlog is easily compiled as standalone microcontroller programs,
it is a bit unwieldy to use within other interactive contexts, e. g., embedding it
into an existing programming framework.

pymicrolog tries to bridge that gap, as the embedded Python DSL can easily
be used to implement logic programs in existing Python-based imperative frame-
works for user interaction, like the EV3dev Python bindings for LEGO EV3 or
terminal control libraries like curses.

In Section 2 of this paper we recapitulate the Microlog language and explore
some syntactic and semantic differences between Microlog and pymicrolog. Sec-
tion 3 explores some example applications, proving the viability of pymicrolog
for implementing interactive applications. Section 4 sees us draw conclusions and
problems noted from the implementation of the example applications.

Interactive Logic Programming in Python 3

2 Microlog recap and pymicrolog differences

Microlog is based in Datalog with an explicit representation of time is modeled
after the Dedalus0 language [1]. Broadly, Microlog contains four kinds of rules:

– Initial facts p(1, 2)@0. are facts that are true at the start of the program
for timestamp 0. In contrast to Datalog, where the initial database for the
extensional relations is seen as “swappable”, while the intensional relations
defined by rules are seen as the “program”, Microlog has no concept of a
swappable extensional database. The extensional database are (first) the
initial facts (@0) and subsequently the inductive facts passed into the future
(@next).

– Deductive rules p(X) :- q(X), #f(_, Y), X < Y. that deduce additional
facts for the current timestamp and correspond to Datalog rules for inten-
sional relations.

– Inductive rules p(X)@next :- !p_del(X), p(X). deduce facts that are true
for the next timestamp and are part of the extensional database for the next
program run.

– IO rules #f(X, ?)@next :- p(X). deduce function calls (here for the library
function f with one argument) and the result of the call is put into the ?
so that some fact #f(X, R) is part of the extensional database for the next
timestamp.

Besides regular predicates, arbitrary quantifier-free formula of some chosen
theory (like Presburger Arithmetic) with variables appearing in positive body lit-
erals are allowed. There are some differences between pymicrolog, the embedded
Python DSL, and the concrete syntax for Microlog that is compiled to C++.

2.1 Syntax

Syntactically the Python DSL is based
on operator overloading. Therefore we
are limited to the operators in the
Python language, and try to follow
Python programming conventions where
possible. These are some basic syntactic
differences:

Microlog concrete syntax pymicrolog
@next @NEXT
@0 @START
! ~
n.a.
? n.a.
:- <=
, &
_ ...
. ,

2.2 Declaration

As in other python DSLs, all used symbols need to be declared beforehand.
There are no syntactic limitations regarding the symbols (besides being Python
identifiers and not keywords), but the convention of starting variables with upper

4 M. Wenzel

case letters and everything else with lower case letters works fine with the usual
Python naming conventions.

– Relations need to be declared and assigned to a Python variable. But they
are variadic and no type information is stored.
Example: marker = relation("marker")

– IO predicates that refer to callable functions are declared with the callable
object as its argument. As they are also assigned to Python variables, they
may not start with an octothorpe. IO predicates, like relations, are variadic.
Example (function object): announce = call(print)
Example (lambda expr.): get_input = call(lambda : stdscr.getch(0,0))
IO predicates may also be declared with a non-callable but hashable object
as its argument, which allows the user to supply the callable at a later point.
Example (non-callable): announce = call("print")

– Variables to be used in rules need to be specially created. Though they can
be reused in multiple rules.
Example (single variable): L = variable("L")
Example (multiple variables): C1, C2 = variables("C1", "C2")
Example (multiple variables unpacked): C, R, P = variables(*"CRP")

– There’s no special theory attached to the pymicrolog semantics, and theory
formula are just Boolean oracles from callables. The called function should
be free of side-effects, but that is not enforced:
Example (function object): lt = oracle(operator.lt)
Example (lambda expr.): lt = oracle(lambda x, y: x < y)

2.3 Variadic Relations and Calls

In pymicrolog all relations are variadic, i. e., the number of arguments is not
fixed by the name or type of the relation. When facts in storage are matched
with literals in rule bodies and the number of arguments differ, then the “shorter”
literal or fact is extended to the same number of arguments with the None single-
ton. Therefore r(A, B, C) (all arguments being initialized as variables) matches
with r(1, 2) with the substitution {A: 1, B: 2, C: None}.

This behavior is useful, as a Python function without return value (i. e., miss-
ing return statement or missing return value) implicitly returns None. The con-
vention is that functions with side-effects always return None and only side-effect
free functions return a value. Though that is just convention. Some functions in
the Python standard library for regular expressions return None in case of there
not being a match, and otherwise a match position or match object. Using the
return a,b syntax, returning multiple values as a tuple is encouraged and also
used quite often in the standard library.

A fact that results from an IO call has as its arguments the input arguments
and then all return values (unpacked, if necessary). Our None-handling now
allows us to easily work with the cases where a function returns None because it
has side-effects and does not return anything, or because it deliberately returns
None because that is the result of a search, for example. Given the following
declarations

Interactive Logic Programming in Python 5

1 from pymicrolog import call, NEXT
2 from operator import add
3 fn_add = call(add)
4 fn_part = call(str.partition)
5 fn_announce = call(print)

the result fact on calling would be:

– fn_add(5, 7)@NEXT would result in add(5, 7, 12)
– fn_part("Hello", "ll")@NEXT would result in str.partition("Hello", "ll",

"He", "ll", "o")
– fn_announce("Hello")@NEXT would result in print("Hello",) with the side-

effect of “Hello” being printed to the command line.

This also works the other way around. As functions are variadic, they may
be called with any number of arguments and we just pass all the input argu-
ments from the corresponding call fact to the function. So fn_announce("Hello",
N)@NEXT <= user(N), with N declared as a variable works nicely and results
in print("Hello", name) for each name in the user relation with the cor-
responding side-effect. fn_announce("Hello", A, "from", B)@NEXT <= user(A) &
user(B), deduces print("Hello", a, "from", b) for each pair of users a,b.

2.4 Python Data Model

It is also useful to note that we often can avoid lambda functions in call
declarations as, in general, the Python function call o.fn(arg) is equivalent
to type(o).fn(o, arg). All functions attached to a class are static and are
implicitly passed the calling object as its first argument if it was an object
and not a class call. Usually we would call "Hello".partition("ll") instead of
str.partition("Hello", "ll"), but they are equivalent. As functions are objects,
they can be passed to the call-relation constructor.

This extends to oracles, where we can also use arbitrary functions attached
to classes, like oracle(str.isdigit), to check whether for the given string all
characters in the string are digits and there is at least one character in the
string.

Operators also have a specific calling convention. The convention is very
complex, but as a simplification it suffices to say that a <op> b translates to
a.__<opname>__(b), which in turn translates to type(a).__<opname>__(a,
b). And if the types of a and b differ and the first operation raises a spe-
cific exception, the runtime tries type(b).__<opname>__(a, b) instead. As an
example "Hel" + "lo" ultimately translates to str.__add__("Hel", "lo").

2.5 Storage

There are two different storage backends for the relations that offer a trade-off
between speed and flexibility in terms of which types of values are allowed:

6 M. Wenzel

– The memory backend uses Python sets to store the model and tuples to
store facts. Therefore all hashable Python types are allowed as a term or IO
call return value. The memory backend is relatively slow, as the data access
for pattern matching is only linear.

– The SQLite backend uses an in-memory SQLite database to store the model.
All facts are stored in a single relation. Only types that are supported by
SQLite are allowed as a term or IO call return value. The SQLite backend
is comparatively fast, as fact storage is index-supported.

2.6 Static Analysis

Microlog specifically targets microcontrollers and embedded devices. By only
using oracle functions with known interpretations (corresponding to some user-
chosen theory) and using this theory in an SMT-solver, the Microlog compiler
analyzes Microlog programs and tries to prove that it uses finite memory and
therefore has a finite state space. If the state space is finite, alternative compi-
lation techniques, into a finite state machine, for example, are possible.

Additionally, through symbolic execution techniques the program may be
minimized by removing rules and relations that are never used in a program
run.

pymicrolog has no facilities for static analysis and only implements the de-
fault execution technique. pymicrolog programs are still checked for syntactic
stratification, as this is a necessary precondition for the deduction algorithm to
work, but otherwise there is no static analysis implemented.

2.7 Program Object and Main Loop

Regular Microlog is compiled into a device-specific template that includes the
main loop. The Python DSL is to be embedded in regular Python programs.

The Program constructor has the signature Program(rules, name=None,
fnmapping=dict()) with the following arguments:

– An iterable of rules that the program is composed of.
– The name of the program for the purpose of string representation.
– A dictionary of mappings from arbitrary hashable values (the expected usage

are strings) to callables, allowing oracles and call relations to be declared
with an “name” that is replaced with an actual callable when the program is
executed. This allows us to reuse programs and just exchange the callables
without having to change the declarations.

3 Example Applications

In this section we look at a few example applications to get a feel for the vi-
ability of pymicrolog for programming interactive applications. Other example
applications, like an edge follower implementation for the LEGO EV3 robot, is
available in project repository.

Interactive Logic Programming in Python 7

3.1 Connect Four

It is possible to implement the two-player version of the popular “Connect Four”
in pymicrolog using the curses module, which is an interface for the curses
library for portable advanced terminal handling. Besides the initialisation and
finalisation of the curses terminal, we can make do without imperative code.
We have already neted in [10] that a 1-player version against the computer is
difficult to implement. While it is possible to implement an AI opponent that
exhaustively “looks” some n moves ahead and chooses one that is not losing,
there is no random choice and there is no way to weigh board positions.

We start by importing our libraries and initializing the terminal. We register
an exit call that waits for another key-press and then resets the terminal.

1 from pymicrolog import *
2 import curses, sys
3 stdscr = curses.initscr()
4 curses.noecho()
5 curses.cbreak()
6 stdscr.keypad(True)
7

8 def _exit(code):
9 curses.nocbreak()

10 stdscr.keypad(False)
11 curses.echo()
12 stdscr.getch()
13 curses.endwin()
14 sys.exit(code)
15 exit = call(_exit)

We also define some general calls to print single characters (in the board’s
coordinate system) and longer messages to the screen.

16 print_marker = call(lambda x, y, ch: stdscr.addch(10-y, x, str(ch)))
17 announce = call(lambda *a: stdscr.addstr(12,0, ' '.join(map(str,a))))
18 get_input = call(lambda : stdscr.getch(0,0))
19 refresh = call(stdscr.refresh)

The main difficulty for such a game is correctly scheduling the input and
output with the curses library. After setting all the screen characters we need
to refresh the screen. As the order of the calls within the same state is non-
deterministic, we need one state where all the characters are written, and one
where the screen is refreshed. The same is true for the phase where we receive the
user input. Therefore we create a 4-phase state machine where in the “inbetween
states” we refresh the screen. We also schedule the game to exit once a winner
has been determined.

20 setup, phase, winner = relation("setup"), relation("phase"),
relation("winner")↪→

21 phase_rules = [setup()@START,

8 M. Wenzel

22 phase("out")@NEXT <= setup(),
23 phase("settle_out")@NEXT <= phase("out"),
24 phase("in")@NEXT <= phase("settle_out"),
25 phase("settle_in")@NEXT <= phase("in"),
26 phase("out")@NEXT <= phase("settle_in"),
27 get_input()@NEXT <= phase("in") & ~winner(...),
28 refresh()@NEXT <= phase("settle_in"),
29 refresh()@NEXT <= phase("settle_out"),
30 exit(0)@NEXT <= phase("settle_in") & winner(...),]

We create a few static facts to describe the state-space of our actual game.
There are two players, seven columns, six rows, and static relations for describing
the topology of the spaces on the board. We also create a few variables for players,
rows, and columns.

31 player, current_player = relation("player"), relation("current_player")
32 player_facts = [player(1), player(2), current_player(1)@START]
33

34 column, row = relation("column"), relation("row")
35 top_of, besides = relation("top_of"), relation("besides")
36 column_facts = [column(x) for x in range(7)]
37 row_facts = [row(y) for y in range(6)]
38 top_of_facts = [top_of(y+1, y) for y in range(5)]
39 besides_facts = [besides(x+1, x) for x in range(6)]
40

41 C, R, P, P2 = variables(*"CRP", "P2")
42 C1, C2, C3, C4, R1, R2, R3, R4 = variables("C1", "C2", "C3", "C4", "R1",

"R2", "R3", "R4")↪→

We need to create relations for the board state and and how it changes.
The board is initialized with all 0. If a player drops a marker in a column, the
column is either empty, then the marker is at the bottom, or it is not empty
and it replaces the empty marker that is on top of an existing marker. This is a
straightforward implementation of “gravity”.

New markers overwrite old markers for the next state, otherwise the board
is carried over. We also print the board in the out-phase, and print the current
player’s number above the board to indicate the column that is currently selected
for dropping their marker. All other indicator positions are to be cleared.

43 marker = relation("marker") # board state
44 new_marker = relation("new_marker") # where the new marker by the player

will be↪→

45 desired_column = relation("desired_column") # the currently selected
column where a player maybe wants to drop their marker↪→

46 dropped = relation("dropped") # the column where the marker is actually
dropped↪→

47 new_desired_column = relation("new_desired_column") # the column that the
player will have selected in the next state↪→

48 marker_rules = [

Interactive Logic Programming in Python 9

49 marker(C, R, 0) <= setup() & row(R) & column(C), # init
50 new_marker(C, 0, P) <= dropped(P, C) & marker(C, 0, 0),
51 new_marker(C, R, P) <= dropped(P, C) & ~marker(C, 0, 0) & marker(C,

R, 0) & top_of(R, R2) & ~marker(C, R2, 0),↪→

52 marker(C, R, P)@NEXT <= marker(C, R, P) & ~new_marker(C, R, ...),
53 marker(C, R, P)@NEXT <= new_marker(C, R, P),
54 print_marker(C, R, P)@NEXT <= marker(C, R, P) & ~new_marker(C, R,

...) & phase("out"),↪→

55 print_marker(C, R, P)@NEXT <= new_marker(C, R, P) & phase("out"),
56 print_marker(C, 8, P)@NEXT <= current_player(P) & desired_column(C) &

phase("out"),↪→

57 print_marker(C, 8, " ")@NEXT <= column(C) & current_player(P) &
~desired_column(C) & phase("out"),]↪→

The rules on how to handle the user input and when to register a dropped
marker are quite straightforward. We have a new selected drop column if the
user pressed “left” or “right” on the keyboard and there is still a valid column in
that direction. Otherwise, the selected column stays the same.

If “down” is pressed on the keyboard and there is still space in the selected
column, we get a dropped marker there for the current player. Once a marker is
dropped, the current player switches, otherwise it stays the same.

58 get_drop_rule = [
59 desired_column(0) <= setup(),
60 new_desired_column(C2) <= get_input(curses.KEY_RIGHT) &

desired_column(C1) & besides(C2, C1),↪→

61 new_desired_column(C2) <= get_input(curses.KEY_LEFT) &
desired_column(C1) & besides(C1, C2),↪→

62 desired_column(C)@NEXT <= desired_column(C) &
~new_desired_column(...),↪→

63 desired_column(C)@NEXT <= new_desired_column(C),
64 dropped(P, C) <= get_input(curses.KEY_DOWN) & current_player(P) &

desired_column(C) & marker(C, ..., 0),↪→

65 current_player(P)@NEXT <= dropped(...,...) & player(P) &
~current_player(P),↪→

66 current_player(P)@NEXT <= ~dropped(...,...) & current_player(P),]

The rules on how to win a game are easily understood, if a bit verbose. We
need to create a rule for one of the four directions (↙↓→↘) and deduce a winner
if there are four connected markers for the same player.

67 winner_rules = [
68 winner(P) <= player(P) & marker(C1, R, P) & besides(C1, C2) &

besides(C2, C3) & besides(C3, C4) & marker(C2, R, P) & marker(C3,
R, P) & marker(C4, R, P),

↪→

↪→

69 winner(P) <= player(P) & marker(C, R1, P) & top_of(R1, R2) & top_of(R2,
R3) & top_of(R3, R4) & marker(C, R2, P) & marker(C, R3, P) &
marker(C, R4, P),

↪→

↪→

10 M. Wenzel

70 winner(P) <= player(P) & marker(C1, R1, P) & top_of(R1, R2) &
top_of(R2, R3) & top_of(R3, R4) & besides(C1, C2) & besides(C2, C3)
& besides(C3, C4) & marker(C2, R2, P) & marker(C3, R3, P) &
marker(C4, R4, P),

↪→

↪→

↪→

71 winner(P) <= player(P) & marker(C1, R1, P) & top_of(R1, R2) &
top_of(R2, R3) & top_of(R3, R4) & besides(C2, C1) & besides(C3, C2)
& besides(C4, C3) & marker(C2, R2, P) & marker(C3, R3, P) &
marker(C4, R4, P),

↪→

↪→

↪→

72 announce("Player", P, "has won")@NEXT <= winner(P),
73 winner(P)@NEXT <= winner(P),]

As we already coded the program exit into a call, we simply run the program
with all rules defined before.

74 Program(player_facts + column_facts + row_facts + top_of_facts +
besides_facts + marker_rules + get_drop_rule + phase_rules +
winner_rules).run()

↪→

↪→

While scheduling the input and output, which is inherently imperative, is a
bit difficult, the game rules have easily been implemented and we get a terminal
application for the famous Connect Four game in about 80 lines of code. Other
terminal-based implementations took about twice as many lines [8].

3.2 Stratify

Using Microlog it is possible to implement the stratification algorithm from [4]
in order to stratify regular Datalog programs. Ceri et al. describe the algorithm
as such:

1. Construct the graph EDG∗(P) from the extended dependency graph EDG(P)
for the program P as follows: for each pair of vertices p, q in EDG(P), if
there is a path with a negative edge from p to q in EDG(P), add a negative
edge between p and q in EDG∗(P), if it does not already exist.

2. i := 1
3. Identify the set K of all those vertices from EDG∗(P) without an outgoing

negative edge. Output this as stratum i and delete all vertices of K and
corresponding edges from EDG∗(P).

4. If EDG∗(P) is not empty, increase i by one and go to 3, otherwise stop.

We need to import all the constructors and define some variables and re-
lations. The relation for a stratum is printed and the next stratum number is
returned. We could also implement some external function for the successor, or
define some finite subset of the successor relation.

1 from pymicrolog import *
2 A, B, C, V, S, R = variables(*"ABCVSR")
3 rel, edg, edgs, del_edgs, reachable, current_stratum = relation("rel"),

relation("edg"), relation("edg*"), relation("del:edg*"),
relation("reachable"), relation("current_stratum")

↪→

↪→

Interactive Logic Programming in Python 11

4 def _stratum_out(stratum, relation):
5 print(stratum, relation)
6 return stratum + 1
7 stratum, stratum_out = relation("stratum"), call(_stratum_out)

We define a set of initial facts that is the input data. For example the extended
dependency graph for the “railway” program from [4].

8 rules = [
9 edg("safely_connected", "connected", 0)@START,

10 edg("safely_connected", "existscutpoint", -1)@START,
11 # ...
12 rel(R) <= edg(R, ..., ...), rel(R) <= edg(..., R, ...)

To find out, whether a path with a negative edge between two nodes exists,
we construct the transitive closure of the extended dependency graph. Though
we also need to carry the reachability via a negative edge: if A reaches B via
a negative edge, then any C reachable from B is also reachable via a negative
edge. We also need to consider the symmetric case.

13 reachable(A, A, 0) <= edg(A, ..., ...),
14 reachable(A, A, 0) <= edg(..., A, ...),
15 reachable(A, B, V) <= edg(A, B, V),
16 reachable(A, C, 0) <= reachable(A, B, 0) & reachable(B, C, 0),
17 reachable(A, C, -1) <= reachable(A, B, ...) & reachable(B, C, -1),
18 reachable(A, C, -1) <= reachable(A, B, -1) & reachable(B, C, ...)

We construct EDG∗(P) according to the definition. If two vertices are reach-
able via a negative edge in EDG(P), they receive a negative edge in EDG∗(P).
Otherwise we take the non-negative edges. We also table this relation, i. e. we
carry the facts that are not in a specific “delete this”-relation.

19 edgs(A, B, -1) <= reachable(A, B, -1),
20 edgs(A, B, 0) <= edg(A, B, 0) & ~reachable(A, B, -1),
21 edgs(A, B, V)@NEXT <= edgs(A, B, V) & ~del_edgs(A, B, ...),

Finally, we need to identify the relations for the current stratum (those with-
out negative outgoing edges), print them, delete (i. e., not carry over) all cor-
responding edges for the relations that we have assigned a stratum, and carry
over the remaining vertices and edges, so that we can continue with the next
stratum.

22 current_stratum(1)@START,
23 current_stratum(V) <= stratum_out(..., ..., V),
24 stratum(S, R) <= rel(R) & ~edgs(R, ..., -1) & current_stratum(S), # set k

of no outgoing ~edge↪→

25 del_edgs(B, V, C) <= stratum(..., V) & edgs(B, V, C), # delete them
26 rel(V)@NEXT <= rel(V) & ~stratum(..., V),
27 stratum_out(S, V)@NEXT <= stratum(S, V),]

12 M. Wenzel

And the result of running the program we get the following stratification,
which is the stratification sa from [4]:

1 station
1 connected
1 circumvent
1 linked
2 cutpoint
2 existscutpoint
3 safely_connected

4 Conclusion

As we have seen from the introduction of the 4-phase execution model for the
connect-4 game, it would have been useful to be able to order the different IO
calls so that there is a deterministic ordering within a single state. This would
have made it possible to schedule the screen refresh after the drawing, sparing us
from doubling the number of phases. We probably could have implemented the
game using a 2-phase execution model (input and output phase). A prioritization
is already present in [2], one inspiration for Microlog’s model of IO, but was
ignored as mandatory sorting of the output was seen as an undue computational
burden in the microcontroller use case. IO ordering within the same has to be
revisited and maybe introduced as an optional language construct.

Otherwise it is quite clear that interactive programs, like games, and other
algorithms can be implemented using Pymicrolog with an expressive declarative
syntax. Logic programming, at least in this case, lends itself to encoding game
rules that can also be executed. As previously noted, Microlog is limited in its
expressivity so that AI opponents that weigh multiple board states to choose
from can not be implemented. Whether it is easier to then implement the whole
game in imperative Python or whether it is easier to implement a callable that
the pymicrolog code uses to solicit AI moves needs to be investigated. Though not
shown in this paper, implementing robot behaviours for LEGO EV3 is another
interesting use case that is well supported by pymicrolog.

The library is available at https://github.com/maweki/pymicrolog and has
no additional dependencies outside the Python standard library.

References

1. Alvaro, P., Marczak, W.R., Conway, N., Hellerstein, J.M., Maier, D., Sears, R.:
Dedalus: Datalog in time and space. In: de Moor, O., Gottlob, G., Furche, T., Sell-
ers, A.J. (eds.) Datalog Reloaded - First International Workshop, Datalog 2010,
Oxford, UK, March 16-19, 2010. Revised Selected Papers. Lecture Notes in Com-
puter Science, vol. 6702, pp. 262–281. Springer (2010). https://doi.org/10.1007/
978-3-642-24206-9_16, https://doi.org/10.1007/978-3-642-24206-9_16

https://github.com/maweki/pymicrolog
https://doi.org/10.1007/978-3-642-24206-9_16
https://doi.org/10.1007/978-3-642-24206-9_16
https://doi.org/10.1007/978-3-642-24206-9_16
https://doi.org/10.1007/978-3-642-24206-9_16
https://doi.org/10.1007/978-3-642-24206-9_16

Interactive Logic Programming in Python 13

2. Basol, S., Erdem, O., Fink, M., Ianni, G.: HEX programs with action atoms. In:
Hermenegildo, M.V., Schaub, T. (eds.) Technical Communications of the 26th In-
ternational Conference on Logic Programming, ICLP 2010, July 16-19, 2010, Edin-
burgh, Scotland, UK. LIPIcs, vol. 7, pp. 24–33. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2010). https://doi.org/10.4230/LIPIcs.ICLP.2010.24, https://doi.
org/10.4230/LIPIcs.ICLP.2010.24

3. Cecchi, L.A., Rodríguez, J.P., Dahl, V.: Logic programming at elementary school:
Why, what and how should we teach logic programming to children? In: Warren,
D.S., Dahl, V., Eiter, T., Hermenegildo, M.V., Kowalski, R.A., Rossi, F. (eds.)
Prolog: The Next 50 Years, Lecture Notes in Computer Science, vol. 13900, pp.
131–143. Springer (2023). https://doi.org/10.1007/978-3-031-35254-6_11, https:
//doi.org/10.1007/978-3-031-35254-6_11

4. Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Surveys in
computer science, Springer (1990), http://www.worldcat.org/oclc/20595273

5. da Costa, L.: Self-serve dashboards, https://briefer.cloud/blog/posts/
self-serve-bi-myth/

6. Fagerlund, J., Häkkinen, P., Vesisenaho, M., Viiri, J.: Computational thinking
in programming with scratch in primary schools: A systematic review. Comput.
Appl. Eng. Educ. 29(1), 12–28 (2021). https://doi.org/10.1002/cae.22255, https:
//doi.org/10.1002/cae.22255

7. Maloney, J.H., Resnick, M., Rusk, N., Silverman, B., Eastmond, E.: The scratch
programming language and environment. ACM Trans. Comput. Educ. 10(4), 16:1–
16:15 (2010). https://doi.org/10.1145/1868358.1868363, https://doi.org/10.1145/
1868358.1868363

8. Nieves, O.: Programming a connect-4 game on python, https://oscarnieves100.
medium.com/programming-a-connect-4-game-on-python-f0e787a3a0cf

9. Papert, S.: Mindstorms: children, computers, and powerful ideas. Basic Books, New
York (1980)

10. Wenzel, M.: Expressivity of the microlog language. In: 35th Workshop on Logic
Programming (WLP 2021) (2021)

https://doi.org/10.4230/LIPIcs.ICLP.2010.24
https://doi.org/10.4230/LIPIcs.ICLP.2010.24
https://doi.org/10.4230/LIPIcs.ICLP.2010.24
https://doi.org/10.4230/LIPIcs.ICLP.2010.24
https://doi.org/10.1007/978-3-031-35254-6_11
https://doi.org/10.1007/978-3-031-35254-6_11
https://doi.org/10.1007/978-3-031-35254-6_11
https://doi.org/10.1007/978-3-031-35254-6_11
http://www.worldcat.org/oclc/20595273
https://briefer.cloud/blog/posts/self-serve-bi-myth/
https://briefer.cloud/blog/posts/self-serve-bi-myth/
https://doi.org/10.1002/cae.22255
https://doi.org/10.1002/cae.22255
https://doi.org/10.1002/cae.22255
https://doi.org/10.1002/cae.22255
https://doi.org/10.1145/1868358.1868363
https://doi.org/10.1145/1868358.1868363
https://doi.org/10.1145/1868358.1868363
https://doi.org/10.1145/1868358.1868363
https://oscarnieves100.medium.com/programming-a-connect-4-game-on-python-f0e787a3a0cf
https://oscarnieves100.medium.com/programming-a-connect-4-game-on-python-f0e787a3a0cf

	pymicrolog – Interactive Logic Programming in Python

